首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin D receptor (VDR) ligands, in addition to controlling calcium metabolism, exert important effects on the growth and differentiation of many cell types and possess pronounced pro-tolerogenic immunoregulatory activities. VDR ligands can act directly on T cells, but antigen-presenting cells (APCs), and in particular dendritic cells (DCs), appear to be primary targets for their tolerogenic properties. The capacity of VDR ligands to target APCs and T cells is mediated by VDR expression in both cell types and by the presence of common targets in their signal transduction pathways, such as the nuclear factor NF-kB that is down-regulated in APCs and in T cells. VDR ligands can induce in vitro and in vivo tolerogenic DCs able to enhance CD4(+)CD25(+) suppressor T cells that, in turn, inhibit Th1 cell responses. These mechanisms of action can explain some of the immunoregulatory properties of VDR ligands, and are potentially relevant for the treatment of Th1-mediated autoimmune diseases and allograft rejection.  相似文献   

2.
CD8alpha+ and CD8alpha- dendritic cells (DCs) arise from committed bone marrow progenitors and can induce or regulate immune reactivity. Previously, the maturational status of CD8alpha-(myeloid) DCs has been shown to influence allogeneic T cell responses and allograft survival. Although CD8alpha+ DCs have been implicated in central tolerance and found to modulate peripheral T cell function, their influence on the outcome of organ transplantation has not been examined. Consistent with their equivalent high surface expression of MHC and costimulatory molecules, sorted mature C57BL/10J (B10; H2(b)) DCs of either subset primed naive, allogeneic C3H/HeJ (C3H; H2(k)) recipients for Th1 responses. Paradoxically and in contrast to their CD8alpha- counterparts, mature CD8alpha+ B10 DCs given systemically 7 days before transplant markedly prolonged B10 heart graft survival in C3H recipients. This effect was associated with specific impairment of ex vivo antidonor T cell proliferative responses, which was not reversed by exogenous IL-2. Further analyses of possible underlying mechanisms indicated that neither immune deviation nor induction of regulatory cells was a significant contributory factor. In contrast to the differential capacity of the mature DC subsets to affect graft outcome, immature CD8alpha+ and CD8alpha- DCs administered under the same experimental conditions significantly prolonged transplant survival. These observations demonstrate for the first time the innate capacity of CD8alpha+ DCs to regulate alloimmune reactivity and transplant survival, independent of their maturation status. Mobilization of such a donor DC subset with capacity to modulate antidonor immunity may have significant implications for the therapy of allograft rejection.  相似文献   

3.
Experimental studies in monkeys on the basis of ex vivo-generated, reinjected dendritic cells (DCs) allow investigations of primate DC biology in vivo. To study in vitro and in vivo properties of DCs with a reduced capacity to produce IL-12, we adapted findings obtained in vitro with human cells to the rhesus macaque model. Following exposure of immature monocyte-derived monkey DCs to the immunomodulating synthetic polypeptide glatiramer acetate (GA) and to dibutyryl-cAMP (d-cAMP; i.e., a cAMP enhancer that activates DCs but inhibits the induction of Th1 immune responses), the resulting DCs displayed a mature phenotype with enhanced Ag-specific T cell stimulatory function, notably also for memory Th1 cells. Phosphorylation of p38 MAPK was not induced in GA/d-cAMP-activated DCs. Accordingly, these cells secreted significantly less IL-12p40 (p < or = 0.001) than did cytokine-activated cells. However, upon restimulation with rhesus macaque CD154, GA/d-cAMP-activated DCs produced IL-12p40/IL-23. Additionally, DCs activated by proinflammatory cytokines following protocols for the generation of cells used in clinical studies secreted significantly more IL-23 upon CD154 restimulation than following prior activation. Two days after intradermal injection, GA/d-cAMP-activated fluorescence-labeled DCs were detected in the T cell areas of draining lymph nodes. When similarly injected, GA/d-cAMP as well as cytokine-activated protein-loaded DCs induced comparable Th immune responses characterized by secretion of IFN-gamma, TNF, and IL-17, and transiently expanded FOXP3(+) regulatory T cells. Reactivation of primate DCs through CD154 considerably influences their immmunostimulatory properties. This may have a substantial impact on the development of innovative vaccine approaches.  相似文献   

4.
5.
Dendritic cells (DCs) are bone marrow-derived APCs that display unique properties aimed at stimulating naive T cells. Several members of the TNF/TNFR families have been implicated in T cell functions. In this study, we examined the role that Ox40 costimulation might play on the ability of DCs to regulate CD4(+) and CD8(+) T cell responses in vivo. Administration of anti-mouse Ox40 mAb enhanced the Th response induced by immunization with Ag-pulsed DCs, and introduced a bias toward a Th1 immune response. However, anti-Ox40 treatment enhanced the production of Th2 cytokines in IFN-gamma(-/-) mice after immunization with Ag-pulsed DCs, suggesting that the production of IFN-gamma during the immune response could interfere with the development of Th2 lymphocytes induced by DCs. Coadministration of anti-Ox40 with DCs during Ag rechallenge enhanced both Th1 and Th2 responses induced during a primary immunization with DCs, and did not reverse an existing Th2 response. This suggests that Ox40 costimulation amplifies an ongoing immune response, regardless of Th differentiation potential. In an OVA-TCR class II-restricted adoptive transfer system, anti-Ox40 treatment greatly enhanced the level of cytokine secretion per Ag-specific CD4(+) T cell induced by immunization with DCs. In an OVA-TCR class I-restricted adoptive transfer system, administration of anti-Ox40 strongly enhanced expansion, IFN-gamma secretion, and cytotoxic activity of Ag-specific CD8(+) T cells induced by immunization with DCs. Thus, by enhancing immune responses induced by DCs in vivo, the Ox40 pathway might be a target for immune intervention in therapeutic settings that use DCs as Ag-delivery vehicles.  相似文献   

6.
One strategy to induce optimal cellular and humoral immune responses following immunization is to use vaccines or adjuvants that target dendritic cells and B cells. Activation of both cell types can be achieved using specific TLR ligands or agonists directed against their cognate receptor. In this study, we compared the ability of the TLR7/8 agonist R-848, which signals only via TLR7 in mice, with CpG oligodeoxynucleotides for their capacity to induce HIV-1 Gag-specific T cell and Ab responses when used as vaccine adjuvants with HIV-1 Gag protein in mice. Injection of R-848 and CpG oligodeoxynucleotides alone enhanced the innate immune responses in vivo as demonstrated by high serum levels of inflammatory cytokines, including IL-12p70 and IFN-alpha, and increased expression of CD80, CD86, and CD40 on CD11c(+) dendritic cells. By contrast, R-848 was a relatively poor adjuvant for inducing primary Th1 or CD8(+) T cell responses when administered with HIV-1 Gag protein. However, when a TLR7/8 agonist structurally and functionally similar to R-848 was conjugated to HIV-1 Gag protein both Th1 and CD8(+) T cells responses were elicited as determined by intracellular cytokine and tetramer staining. Moreover, within the population of HIV-1 Gag-specific CD8(+) CD62(low) cells, approximately 50% of cells expressed CD127, a marker shown to correlate with the capacity to develop into long-term memory cells. Overall, these data provide evidence that TLR7/8 agonists can be effective vaccine adjuvants for eliciting strong primary immune responses with a viral protein in vivo, provided vaccine delivery is optimized.  相似文献   

7.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

8.
It is clear that dendritic cells (DCs) are essential for priming of T cell responses against tumors. However, the distinct roles DC subsets play in regulation of T cell responses in vivo are largely undefined. In this study, we investigated the capacity of OVA-presenting CD4-8-, CD4+8-, or CD4-8+ DCs (OVA-pulsed DC (DC(OVA))) in stimulation of OVA-specific T cell responses. Our data show that each DC subset stimulated proliferation of allogeneic and autologous OVA-specific CD4+ and CD8+ T cells in vitro, but that the CD4-8- DCs did so only weakly. Both CD4+8- and CD4-8+ DC(OVA) induced strong tumor-specific CD4+ Th1 responses and fully protective CD8+ CTL-mediated antitumor immunity, whereas CD4-8- DC(OVA), which were less mature and secreted substantial TGF-beta upon coculture with TCR-transgenic OT II CD4+ T cells, induced the development of IL-10-secreting CD4+ T regulatory 1 (Tr1) cells. Transfer of these Tr1 cells, but not T cells from cocultures of CD4-8- DC(OVA) and IL-10-/- OT II CD4+ T cells, into CD4-8+ DC(OVA)-immunized animals abrogated otherwise inevitable development of antitumor immunity. Taken together, CD4-8- DCs stimulate development of IL-10-secreting CD4+ Tr1 cells that mediated immune suppression, whereas both CD4+8- and CD4-8+ DCs effectively primed animals for protective CD8+ CTL-mediated antitumor immunity.  相似文献   

9.
Mesenchymal stem cells (MSCs) are not only able to evade the immune system, but they have also been demonstrated to exert profound immunosuppressive properties on T cell proliferation. However, their effect on the initiators of the immune response, the dendritic cells (DCs), are relatively unknown. In the present study, the effects of human MSCs on the differentiation and function of both CD34+ -derived DCs and monocyte-derived DCs were investigated. The presence of MSCs during differentiation blocked the differentiation of CD14+CD1a- precursors into dermal/interstitial DCs, without affecting the generation of CD1a+ Langerhans cells. In line with these observations, MSCs also completely prevented the generation of immature DCs from monocytes. The inhibitory effect of MSCs on DC differentiation was dose dependent and resulted in both phenotypical and functional modifications, as demonstrated by a reduced expression of costimulatory molecules and hampered capacity to stimulate naive T cell proliferation. The inhibitory effect of MSCs was mediated via soluble factors. Taken together, these data demonstrate that MSCs, next to the antiproliferative effect on T cells, have a profound inhibitory effect on the generation and function of both CD34+ -derived and monocyte-derived DCs, indicating that MSCs are able to modulate immune responses at multiple levels.  相似文献   

10.
Interactions between dendritic cells (DCs) and T cells play a pivotal role in the regulation and maintenance of immune responses. In cancer patients, various immunological abnormalities have been observed in these immune cells. Here, we investigated proportions and the phenotype of DCs and the cytokine profile of T-cell subsets in the peripheral blood of patients with squamous cell carcinoma of the head and neck (SCCHN), using multicolor flow cytometry. The percentage of myeloid (CD11c+), but not plasmacytoid (CD123+) DCs, was significantly lower (P<0.05) and expression of HLA-DR was significantly decreased in total and myeloid DCs of cancer patients compared to healthy donors. Simultaneous analyses of T-cell subsets in the patients’ circulation showed significantly increased proportions of CD4+ T cells expressing Th1 and Th2 cytokines after ex vivo stimulation without any skewing in the Th1/Th2 ratio. The relative level of HLA-DR expression on myeloid or total DCs positively correlated with the Th1/Th2 ratio (P<0.01), and the proportion of total circulating DCs was inversely correlated with that of regulatory CD4+CD25+ T cells (P<0.01). These results suggest that the decreased proportion of circulating DCs and decreased HLA-DR expression in DCs may have a major impact on systemic immune responses in patients with SCCHN.  相似文献   

11.
Although dendritic cells (DCs) regulate immune responses, they exhibit functional heterogeneity depending on their anatomical location. We examined the functional properties of intestinal DCs after oral administration of cholera toxin (CT), the most potent mucosal adjuvant. Two CD11c+ DC subsets were identified both in Peyer's patches and mesenteric lymph nodes (MLN) based on the expression of CD8alpha (CD8+ and CD8- DCs, respectively). A third subset of CD11c+CD8int was found exclusively in MLN. Feeding mice with CT induced a rapid and transient mobilization of a new CD11c+CD8- DC subset near the intestinal epithelium. This recruitment was associated with an increased production of the chemokine CCL20 in the small intestine and was followed by a massive accumulation of CD8int DCs in MLN. MLN DCs from CT-treated mice were more potent activators of naive T cells than DCs from control mice and induced a Th2 response. This increase in immunostimulating properties was accounted for by CD8int and CD8- DCs, whereas CD8+ DCs remained insensitive to CT treatment. Consistently, the CD8int and CD8- subsets expressed higher levels of costimulatory molecules than CD8+ and corresponding control DCs. Adoptive transfer experiments showed that these two DC subsets, unlike CD8+ DCs, were able to present Ags orally coadministered with CT in an immunostimulating manner. The ability of CT to mobilize immature DCs in the intestinal epithelium and to promote their emigration and differentiation in draining lymph nodes may explain the exceptional adjuvant properties of this toxin on mucosal immune responses.  相似文献   

12.
13.
Adenylate cyclase toxin (CyaA) is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC) enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR)-activated murine and human dendritic cells (DCs). cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4+ and CD8+ T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4+CD25+Foxp3+ T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8+ T cell proliferation and limited the induction of IFN-γ producing CD8+ T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.  相似文献   

14.
Similarly to other blood-feeding arthropods, ticks have evolved immunosuppressive mechanisms enabling them to overcome the host immune system. Although the immunomodulatory effect of tick saliva on several cell populations of the immune system has been extensively studied, little is known about its impact on dendritic cells (DCs). We have examined the effect of Ixodes ricinus tick saliva on DC function in vitro and in vivo. Exposure of DCs to tick saliva in vitro resulted in impaired maturation, upon CD40 or TLR9, TLR3 and TLR7 ligation, as well as reduced Ag presentation capacity. Administration of tick saliva in vivo significantly inhibited maturation and early migration of DCs from inflamed skin to draining lymph nodes, and decreased the capacity of lymph node DCs to present soluble Ag to specific T cells. Moreover, saliva-exposed DCs failed to induce efficient Th1 and Th17 polarization and promoted development of Th2 responses. Our data reveal a complex inhibitory effect exerted by tick saliva on DC function. Given the role of DCs as the key instigators of adaptive immune responses, alteration of their function might represent a major mechanism of tick-mediated immune evasion.  相似文献   

15.
Exosomes, nano‐sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC‐peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T‐cell activation in vitro. When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN‐γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN‐γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles.  相似文献   

16.
Consistent with their seminal role in detecting infection, both mouse bone marrow-derived and splenic CD11c+ dendritic cells (DCs) exhibited higher levels of uptake of Plasmodium chabaudi-parasitized RBCs (pRBCs) than of noninfected RBCs (nRBCs) as determined by our newly developed flow cytometric technique using the dye CFSE to label RBCs before coculture with DCs. To confirm that expression of CFSE by CD11c+ cells following coculture with CFSE-labeled pRBCs represents internalization of pRBC by DCs, we showed colocalization of CFSE-labeled pRBCs and PE-labeled CD11c+ DCs by confocal fluorescence microscopy. Treatment of DCs with cytochalasin D significantly inhibited the uptake of pRBCs, demonstrating that uptake is an actin-dependent phagocytic process. The uptake of pRBCs by splenic CD11c+ DCs was significantly enhanced after infection in vivo and was associated with the induction of DC maturation, IL-12 production, and stimulation of CD4+ T cell proliferation and IFN-gamma production. These results suggest that DCs selectively phagocytose pRBCs and present pRBC-derived Ags to CD4+ T cells, thereby promoting development of protective Th1-dependent immune responses to blood-stage malaria infection.  相似文献   

17.
Mouse CD1d-restricted NKT cells, including invariant (i)NKT cells, are innate cells activated by glycolipid Ags and play important roles in the initiation and regulation of immune responses. Through their ability to promptly produce large amounts of Th1 and/or Th2 cytokines upon TCR engagement, iNKT cells exert crucial functions in the immune/inflammatory system during bacterial, protozoan, fungal, and viral infections. However, their roles during metazoan parasite infection, which are generally associated with strong Th2 responses, still remain elusive. In this study, we show that during the course of murine schistosomiasis, iNKT cells exhibit an activated phenotype and that following schistosome egg encounter in the liver, hepatic iNKT cells produce both IFN-gamma and IL-4 in vivo. We also report that schistosome egg-sensitized dendritic cells (DCs) activate, in a CD1d-dependent manner, iNKT cells to secrete IFN-gamma and IL-4 in vitro. Interestingly, transfer of egg-sensitized DCs promotes a strong Th2 response in recipient wild-type mice, but not in mice that lack iNKT cells. Engagement of TLRs in DCs is not necessary for iNKT cell stimulation in response to egg-sensitized DCs, suggesting an alternative pathway of activation. Finally, we propose that self, rather than parasite-derived, CD1d-restricted ligands are implicated in iNKT cell stimulation. Taken together, our data show for the first time that helminths can activate iNKT cells to produce immunoregulatory cytokines in vivo, enabling them to influence the adaptive immune response.  相似文献   

18.
The uptake of immune complexes by FcRs on APCs augments humoral and cellular responses to exogenous Ag. In this study, CD11c+ dendritic cells are shown to be responsible in vivo for immune complex-triggered priming of T cells. We examine the consequence of Ab-mediated uptake of self Ag by dendritic cells in the rat insulin promoter-membrane OVA model and identify a role for the inhibitory FcgammaRIIB in the maintenance of peripheral CD8 T cell tolerance. Effector differentiation of diabetogenic OT-I CD8+ T cells is enhanced in rat insulin promoter-membrane OVA mice lacking FcgammaRIIB, resulting in a high incidence of diabetes. FcgammaRIIB-mediated inhibition of CD8 T cell priming results from suppression of both DC activation and cross-presentation through activating FcgammaRs. Further FcgammaRIIB on DCs inhibited the induction of OVA-specific Th1 effectors, limiting Th1-type differentiation and memory T cell accumulation. In these MHC II-restricted responses, the presence of FcgammaRIIB only modestly affected initial CD4 T cell proliferative responses, suggesting that FcgammaRIIB limited effector cell differentiation primarily by inhibiting DC activation. Thus, FcgammaRIIB can contribute to peripheral tolerance maintenance by inhibiting DC activation alone or by also limiting processing of exogenously acquired Ag.  相似文献   

19.
Dendritic cells (DCs) play a critical role in both initiating immune responses and in maintaining peripheral tolerance. However, the exact mechanism by which DCs instruct/influence the generation of effector vs regulatory T cells is not clear. In this study, we present evidence that TGF-beta, an important immunoregulatory molecule, is present on the surface of ex vivo immature human DCs bound by latency-associated peptide (LAP). Maturation of DCs upon stimulation with LPS results in loss of membrane-bound LAP and up-regulation of HLA class II and costimulatory molecules. The presence of LAP on immature DCs selectively inhibits Th1 cell but not Th17 cell differentiation and is required for differentiation and/or survival of Foxp3-positive regulatory T cells. Taken together, our results indicate that surface expression of TGF-beta on DCs in association with LAP is one of the mechanisms by which immature DCs limit T cell activation and thus prevent autoimmune responses.  相似文献   

20.
This review summarizes our studies of the past several years on the development of third generation dendritic cell (DC) vaccines. These developments have implemented two major innovations in DC preparation: first, young DCs are prepared within 3 days and, second, the DCs are matured with the help of Toll-like receptor agonists, imbuing them with the capacity to produce bioactive IL-12 (p70). Based on phenotype, chemokine-directed migration, facility to process and present antigens, and stimulatory capacity to polarize Th1 responses in CD4+ T cells, induce antigen-specific CD8+ CTL and activate natural killer cells, these young mDCs display all the important properties needed for initiating good antitumor responses in a vaccine setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号