首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Goal and Scope This study attempts to estimate the environmental performance of Polyhydroxyalkanoates (PHA), from agricultural production through the PHA fermentation and recovery process – “cradle to gate”. Two types of PHA production systems are investigated: corn grain based PHA and corn grain and corn stover based PHA. Methods Corn cultivation data are taken from 14 counties in the Corn Belt states of the United States – Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin. The environmental burdens associated with the corn wet milling process, in which dextrose, corn oil, corn gluten meal and corn gluten feed are produced, are allocated to dextrose and its coproducts by the system expansion approach. Greenhouse gases include carbon taken up by soil, nitrous oxide (N2O) released from soil during corn cultivation, carbon contents in biobased products as well as carbon dioxide, methane and nitrous oxide released from industrial processing. The soil carbon and nitrogen dynamics in corn cultivation are predicted by an agro–ecosystem model, the DAYCENT model. The environmental performance of the PHA production system is compared to that of a conventional polymer fulfilling an equivalent function. The environmental performance is addressed as nonrenewable energy and selected potential environmental impacts including global warming, photochemical smog, acidification, and eutrophication. The characterization factors are adapted from the TRACI model (Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts) developed by the United States Environmental Protection Agency. Results and Discussion Global warming associated with corn grain based PHA is 1.6–4.1 kg-CO2 eq. kg–1. The primary contributing process to most environmental impacts except for photochemical smog and eutrophication is the PHA fermentation and recovery process. For photochemical smog and eutrophication, the primary contributing process is corn cultivation due to nitrogen related burdens from soil. The trend of PHA fermentation development shows that the PHA fermentation technology is still immature and continues to improve, thereby also decreasing the environmental impacts. PHA produced in an integrated system, in which corn stover is harvested and used as raw material for PHA along with corn grain, offers global warming credits (negative greenhouse gas emissions), ranging from –0.28 to –1.9 kg-CO2 eq. kg–1, depending on the PHA fermentation technologies employed and significantly reduces the environmental impacts compared to corn based PHA. The significant reductions from the integrated system are due to 1) less environmental impacts in corn cultivation and wet milling, and 2) exporting surplus energy from lignin–rich residues in corn stover process.Conclusions and Outlook Under the current PHA fermentation technology, corn grain based PHA does not provide an environmental advantage over polystyrene. Corn grain based PHA produced by the near future PHA fermentation technology would be more favorable than polystyrene in terms of nonrenewable energy and global warming due to improvement in the PHA fermentation and recovery process. However, corn grain based PHA produced in even the near future technology does not provide better profiles for other environmental impacts (i.e., photochemical smog, acidification and eutrophication) than polystyrene. One of the primary reasons for high impacts of PHA in photochemical smog, acidification and eutrophication is the environmental burdens associated with corn cultivation. Thus other approaches to reduce these burdens in the agricultural process (e.g., use of buffer strips, etc.) are necessary to achieve better profiles for photochemical smog, acidification and eutrophication associated with corn cultivation. PHA produced in the integrated system is more favorable than polystyrene in terms of most environmental impacts considered here except for eutrophication.  相似文献   

2.
Life cycle assessment of corn grain and corn stover in the United States   总被引:1,自引:0,他引:1  
Background, aim, and scope  The goal of this study is to estimate the county-level environmental performance for continuous corn cultivation of corn grain and corn stover grown under the current tillage practices for various corn-growing locations in the US Corn Belt. The environmental performance of corn grain varies with its farming location because of climate, soil properties, cropping management, etc. Corn stover, all of the above ground parts of the corn plant except the grain, would be used as a feedstock for cellulosic ethanol. Materials and methods  Two cropping systems are under investigation: corn produced for grain only without collecting corn stover (referred to as CRN) and corn produced for grain and stover harvest (referred to as CSR). The functional unit in this study is defined as dry biomass, and the reference flow is 1 kg of dry biomass. The system boundary includes processes from cradle to farm gate. The default allocation procedure between corn grain and stover in the CSR system is the system expansion approach. County-level soil organic carbon dynamics, nitrate losses due to leaching, and nitrogen oxide and nitrous oxide emissions are simulated by the DAYCENT model. Life cycle environmental impact categories considered in this study are total fossil energy use, climate change (referred to as greenhouse gas emissions), acidification, and eutrophication. Sensitivities on farming practices and allocation are included. Results  Simulations from the DAYCENT model predict that removing corn stover from soil could decrease nitrogen-related emissions from soil (i.e., N2O, NO x , and NO3 leaching). DAYCENT also predicts a reduction in the annual accumulation rates of soil organic carbon (SOC) with corn stover removal. Corn stover has a better environmental performance than corn grain according to all life cycle environmental impacts considered. This is due to lower consumption of agrochemicals and fuel used in the field operations and lower nitrogen-related emissions from the soil. Discussion  The primary source of total fossil energy associated with biomass production is nitrogen fertilizer, accounting for over 30% of the total fossil energy. Nitrogen-related emissions from soil (i.e., N2O, NO x , and NO3 leaching) are the primary contributors to all other life cycle environmental impacts considered in this study. Conclusions  The environmental performance of corn grain and corn stover varies with the farming location due to crop management, soil properties, and climate conditions. Several general trends were identified from this study. Corn stover has a lower impact than corn grain in terms of total fossil energy, greenhouse gas emissions, acidification, and eutrophication. Harvesting corn stover reduces nitrogen-related emissions from the soil (i.e., N2O, NO x , NO3 ). The accumulation rate of soil organic carbon is reduced when corn stover is removed, and in some cases, the soil organic carbon level decreases. Harvesting only the cob portion of the stover would reduce the negative impact of stover removal on soil organic carbon sequestration rate while still bringing the benefit of lower nitrogen-related emissions from the soil. No-tillage practices offer higher accumulation rates of soil organic carbon, lower fuel consumption, and lower nitrogen emissions from the soil than the current or conventional tillage practices. Planting winter cover crops could be a way to reduce nitrogen losses from soil and to increase soil organic carbon levels. Recommendations and perspectives  County-level modeling is more accurate in estimating the local environmental burdens associated with biomass production than national- or regional-level modeling. When possible, site-specific experimental information on soil carbon and nitrogen dynamics should be obtained to reflect the system more accurately. The allocation approach between corn grain and stover significantly affects the environmental performance of each. The preferred allocation method is the system expansion approach where incremental fuel usage, additional nutrients in the subsequent growing season, and changes in soil carbon and nitrogen dynamics due to removing corn stover are assigned to only the collected corn stover.  相似文献   

3.
This study conducts a life cycle assessment of a simulated dry mill corn ethanol facility in California’s Central Valley retrofitted to also produce ethanol from corn stover, a cellulosic feedstock. The assessment examines three facility designs, all producing corn ethanol and wet distiller’s grains and solubles as a co-product: a baseline facility with no cellulosic retrofit, a facility retrofitted with a small capacity for stover feedstock, and a facility retrofitted for a large capacity of stover feedstock. Corn grain is supplied by rail from the Midwest, while stover is sourced from in-state farms and delivered by truck. Two stover feedstock supply scenarios are considered, testing harvest rates at 25 or 40 % of stover mass. Allocation is required to separate impacts attributable to co-products. Additional scenarios are explored to assess the effect of co-product allocation methods on life cycle assessment results for the two fuel products, corn ethanol and stover ethanol. The assessment tracks greenhouse gas (GHG) emissions, energy consumption, criteria air pollutants, and direct water consumption. The GHG intensity of corn ethanol produced from the three facility designs range between 61.3 and 68.9 g CO2e/MJ, which includes 19.8 g CO2e/MJ from indirect land use change for Midwestern corn grain. The GHG intensity of cellulosic ethanol varies from 44.1 to 109.2 g CO2e/MJ, and 14.6 to 32.1 g CO2e/MJ in the low and high stover capacity cases, respectively. Total energy input ranges between 0.60 and 0.71 MJ/MJ for corn ethanol and 0.13 to 2.29 MJ/MJ for stover ethanol. This variability is the result of the stover supply scenarios (a function of harvest rate) and co-product allocation decisions.  相似文献   

4.
With cellulosic energy production from biomass becoming popular in renewable energy research, agricultural producers may be called upon to plant and collect corn stover or harvest switchgrass to supply feedstocks to nearby facilities. Determining the production and transportation cost to the producer of corn stover or switchgrass and the amount available within a given distance from the plant will result in a per metric ton cost the plant will need to pay producers in order to receive sufficient quantities of biomass. This research computes up-to-date biomass production costs using recent prices for all important cost components including seed, fertilizer, herbicide, mowing/shredding, raking, baling, storage, handling, and transportation. The cost estimates also include nutrient replacement for corn stover. The total per metric ton cost is a combination of these cost components depending on whether equipment is owned or custom hired, what baling options are used, the size of the farm, and the transport distance. Total costs per dry metric ton for biomass with a transportation distance of 60 km ranges between $63 and $75 for corn stover and $80 and $96 for switchgrass. Using the county quantity data and this cost information, we then estimate biomass supply curves for three Indiana coal-fired electric utilities. This supply framework can be applied to plants of any size, location, and type, such as future cellulosic ethanol plants. Finally, greenhouse gas emissions reductions are estimated from using biomass instead of coal for part of the utility energy and also the carbon tax required to make the biomass and coal costs equivalent. Depending on the assumed CO2 price, the use of biomass instead of coal is found to decrease overall costs in most cases.  相似文献   

5.
Pretreatment plays an important role in the efficient enzymatic hydrolysis of biomass into fermentable sugars for biofuels. A highly effective pretreatment method is reported for corn stover which combines mild alkali-extraction followed by ionic liquid (IL) dissolution of the polysaccharides and regeneration (recovery of the polysaccharides as solids). Air-dried, knife-milled corn stover was soaked in 1% NaOH at a moderate condition (90°C, 1 h) and then thoroughly washed with hot deionized (DI) water. The alkali extraction solublized 75% of the lignin and 37% of the hemicellulose. The corn stover fibers became softer and smoother after the alkali extraction. Unextracted and extracted corn stover samples were separately dissolved in an IL, 1-butyl-3-methylimidazolium chloride (C(4) mimCl), at 130°C for 2 h and then regenerated with DI water. The IL dissolution process did not significantly change the chemical composition of the materials, but did alter their structural features. Untreated and treated corn stover samples were hydrolyzed with commercial enzyme preparations including cellulases and hemicellulases at 50°C. The glucose yield from the corn stover sample that was both alkali-extracted and IL-dissolved was 96% in 5 h of hydrolysis. This is a highly effective methodology for minimizing the enzymatic loading for biomass hydrolysis and/or maximizing the conversion of biomass polysaccharides into sugars.  相似文献   

6.
A biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. We examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO2eq/MJ, respectively, corresponding to a 40 and 74 % reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.  相似文献   

7.
The anticipated 2014 launch of three full-scale corn stover bioenergy conversion facilities is a strong US market signal that cellulosic feedstock supplies must increase dramatically to supply the required biomass in a sustainable manner. This overview highlights research conducted by the USDA-Agricultural Research Service Renewable Energy Assessment Project (now known as the Resilient Economic Agricultural Practices) team as part of the National Institute for Food and Agriculture Sun Grant Regional Feedstock Partnership Corn Stover team. Stover and grain yield, soil organic carbon, soil aggregation, greenhouse gas, energy content of the stover, and several other factors affecting the fledgling bioenergy industry are addressed in this special issue of the journal.  相似文献   

8.
Biorefining strives to recover the maximum value from each fraction, at minimum energy cost. In order to seek an unbiased and thorough assessment of the alleged opportunity offered by biomass fuels, the direct conversion of various lignocellulosic biomass was studied: aspen pulp wood (Populus tremuloides), aspen wood pretreated with dilute acid, aspen lignin, aspen logging residues, corn stalk, corn spathe, corn cob, corn stover, corn stover pellet, corn stover pretreated with dilute acid, and lignin extracted from corn stover. Besides the heating rate, the yield of liquid products was found to be dependent on the final liquefaction temperature and the length of liquefaction time. The major compounds of the liquid products from various origins were identified by GC-MS. The lignin was found to be a good candidate for the liquefaction process, and biomass fractionation was necessary to maximize the yield of the liquid bio-fuel. The results suggest a biorefinery process accompanying pretreatment, fermentation to ethanol, liquefaction to bio-crude oil, and other thermo-conversion technologies, such as gasification. Other biorefinery options, including supercritical water gasification and the effectual utilization of the bio-crude oil, are also addressed.  相似文献   

9.
Cellulosic ethanol is widely believed to offer substantial environmental advantages over petroleum fuels and grain‐based ethanol, particularly in reducing greenhouse gas emissions from transportation. The environmental impacts of biofuels are largely caused by precombustion activities, feedstock production and conversion facility operations. Life cycle analysis (LCA) is required to understand these impacts. This article describes a field‐to‐blending terminal LCA of cellulosic ethanol produced by biochemical conversion (hydrolysis and fermentation) using corn stover or switchgrass as feedstock. This LCA develops unique models for most elements of the biofuel production process and assigns environmental impact to different phases of production. More than 30 scenarios are evaluated, reflecting a range of feedstock, technology and scale options for near‐term and future facilities. Cellulosic ethanol, as modeled here, has the potential to significantly reduce greenhouse gas (GHG) emissions compared to petroleum‐based liquid transportation fuels, though substantial uncertainty exists. Most of the conservative scenarios estimate GHG emissions of approximately 45–60 g carbon dioxide equivalent per MJ of delivered fuel (g CO2e MJ?1) without credit for coproducts, and 20–30 g CO2e MJ?1 when coproducts are considered. Under most scenarios, feedstock production, grinding and transport dominate the total GHG footprint. The most optimistic scenarios include sequestration of carbon in soil and have GHG emissions below zero g CO2e MJ?1, while the most pessimistic have life‐cycle GHG emissions higher than petroleum gasoline. Soil carbon changes are the greatest source of uncertainty, dominating all other sources of GHG emissions at the upper bound of their uncertainty. Many LCAs of biofuels are narrowly constrained to GHG emissions and energy; however, these narrow assessments may miss important environmental impacts. To ensure a more holistic assessment of environmental performance, a complete life cycle inventory, with over 1100 tracked material and energy flows for each scenario is provided in the online supplementary material for this article.  相似文献   

10.
The fungus Aspergillus saccharolyticus was found to produce a culture broth rich in beta-glucosidase activity, an enzyme which plays an essential role for efficient and complete hydrolysis of lignocellulosic biomass. Direct application of fungal fermentation broths produced on-site in a biorefinery may be an integral part of a biorefinery for lowering the cost associated with the use of commercial enzymes for saccharification of biomass. Utilization of low value slip streams from the biorefinery as substrates for such an on-site enzyme production would be ideal to reduce costs. In order to understand which carbon sources that support growth and trigger A. saccharolyticus to produce beta-glucosidases, carbon sources, ranging from monomer sugars to complex lignocellulosic biomasses, including pretreated and hydrolyzed corn stover fractions, were investigated as substrates and inducers of enzyme production. A convenient micro titer plate experimental setup was developed that facilitated a fast screening for beta-glucosidase activity on the different carbon sources. The greatest beta-glucosidase activity was found when A. saccharolyticus was cultivated on media containing xylose, xylan, wheat bran, and pretreated corn stover. In a refinery, beta-glucosidase production by A. saccharolyticus could with success be based on the biomass hemicelluloses and their degradation products which cannot be converted by conventional yeast.  相似文献   

11.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   

12.
Crop residues like corn (Zea mays L.) stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn stover removal from a no-till, corn-soybean (Glycine max (L.) Merr) rotation on soil greenhouse gas (GHG; CO2, N2O, CH4) fluxes, crop yields, and soil organic carbon (SOC) dynamics. We conducted a 4-year study using replicated field plots managed with two levels of corn stover removal (none; 55 % stover removal) for four complete crop cycles prior to initiation of ground surface gas flux measurements. Corn and soybean yields were not affected by stover removal with yields averaging 7.28 Mg ha?1 for corn and 2.64 Mg ha?1 for soybean. Corn stover removal treatment did not affect soil GHG fluxes from the corn phase; however, the treatment did significantly increase (107 %, P?=?0.037) N2O fluxes during the soybean phase. The plots were a net source of CH4 (~0.5 kg CH4-C ha?1 year?1 average of all treatments and crops) during the generally wet study duration. Soil organic carbon stocks increased in both treatments during the 4-year study (initiated following 8 years of stover removal), with significantly higher SOC accumulation in the control plots compared to plots with corn stover removal (0–15 cm, P?=?0.048). Non-CO2 greenhouse gas emissions (945 kg CO2-eq ha?1 year?1) were roughly half of SOC (0–30 cm) gains with corn stover removal (1.841 Mg CO2-eq ha?1 year?1) indicating that no-till practices greatly improve the viability of biennial corn stover harvesting under local soil-climatic conditions. Our results also show that repeated corn stover harvesting may increase N loss (as N2O) from fields and thereby contribute to GHG production and loss of potential plant nutrients.  相似文献   

13.
In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO2 technologies. In addition to measuring the chemical compositions including acetyl content, physical attributes determined were biomass crystallinity, cellulose degree of polymerization, cellulase adsorption capacity of pretreated solids and enzymatically extracted lignin, copper number, FT-IR responses, scanning electron microscopy (SEM) visualizations, and surface atomic composition by electron spectroscopy of chemical analysis (ESCA). Lime pretreatment removed the most acetyl groups from both corn stover and poplar, while AFEX removed the least. Low pH pretreatments depolymerized cellulose and enhanced biomass crystallinity much more than higher pH approaches. Lime pretreated corn stover solids and flowthrough pretreated poplar solids had the highest cellulase adsorption capacity, while dilute acid pretreated corn stover solids and controlled pH pretreated poplar solids had the least. Furthermore, enzymatically extracted AFEX lignin preparations for both corn stover and poplar had the lowest cellulase adsorption capacity. ESCA results showed that SO2 pretreated solids had the highest surface O/C ratio for poplar, but for corn stover, the highest value was observed for dilute acid pretreatment with a Parr reactor. Although dependent on pretreatment and substrate, FT-IR data showed that along with changes in cross linking and chemical changes, pretreatments may also decrystallize cellulose and change the ratio of crystalline cellulose polymorphs (Iα/Iβ).  相似文献   

14.
Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biofuels and chemical feedstocks. However, the high cost of ILs is a key deterrent to their practical application. Here, we show that acetate based ILs are effective in dramatically reducing the recalcitrance of corn stover toward enzymatic polysaccharide hydrolysis even at loadings of biomass as high as 50% by weight. Under these conditions, the IL serves more as a pretreatment additive rather than a true solvent. Pretreatment of corn stover with 1‐ethyl‐3‐methylimidizolium acetate ([Emim] [OAc]) at 125 ± 5°C for 1 h resulted in a dramatic reduction of cellulose crystallinity (up to 52%) and extraction of lignin (up to 44%). Enzymatic hydrolysis of the IL‐treated biomass was performed with a common commercial cellulase/xylanase from Trichoderma reesei and a commercial β‐glucosidase, and resulted in fermentable sugar yields of ~80% for glucose and ~50% for xylose at corn stover loadings up to 33% (w/w) and 55% and 34% for glucose and xylose, respectively, at 50% (w/w) biomass loading. Similar results were observed for the IL‐facilitated pretreatment of switchgrass, poplar, and the highly recalcitrant hardwood, maple. At 4.8% (w/w) corn stover, [Emim][OAc] can be readily reused up to 10 times without removal of extracted components, such as lignin, with no effect on subsequent fermentable sugar yields. A significant reduction in the amount of IL combined with facile recycling has the potential to enable ILs to be used in large‐scale biomass pretreatment. Biotechnol. Bioeng. 2011;108: 2865–2875. © 2011 Wiley Periodicals, Inc.  相似文献   

15.

Purpose

The purpose of this study is to assess and calculate the potential impacts of climate change on the greenhouse gas (GHG) emissions reduction potentials of combined production of whole corn bioethanol and stover biomethanol, and whole soybean biodiesel and stalk biomethanol. Both fuels are used as substitutes to conventional fossil-based fuels. The product system includes energy crop (feedstock) production and transportation, biofuels processing, and biofuels distribution to service station.

Methods

The methodology is underpinned by life cycle thinking. Crop system model and life cycle assessment (LCA) model are linked in the analysis. The Decision Support System for Agrotechnology Transfer – crop system model (DSSAT-CSM) is used to simulate biomass and grain yield under different future climate scenarios generated using a combination of temperature, precipitation, and atmospheric CO2. Historical weather data for Gainesville, Florida, are obtained for the baseline period (1981–1990). Daily minimum and maximum air temperatures are projected to increase by +2.0, +3.0, +4.0, and +5.0 °C, precipitation is projected to change by ±20, 10, and 5 %, and atmospheric CO2 concentration is projected to increase by +70, +210, and +350 ppm. All projections are made throughout the growing season. GaBi 4.4 is used as primary LCA modelling software using crop yield data inputs from the DSSAT-CSM software. The models representation of the physical processes inventory (background unit processes) is constructed using the ecoinvent life cycle inventory database v2.0.

Results and discussion

Under current baseline climate condition, net greenhouse gas (GHG) emissions savings per hectare from corn-integrated biomethanol synthesis (CIBM) and soybean-integrated biomethanol synthesis (SIBM) were calculated as ?8,573.31 and ?3,441 kg CO2-eq. ha?1 yr?1, respectively. However, models predictions suggest that these potential GHG emissions savings would be impacted by changing climate ranging from negative to positive depending on the crop and biofuel type, and climate scenario. Increased atmospheric level of CO2 tends to minimise the negative impacts of increased temperature.

Conclusions

While policy measures are being put in place for the use of renewable biofuels driven by the desire to reduce GHG emissions from the use of conventional fossil fuels, climate change would also have impacts on the potential GHG emissions reductions resulting from the use of these renewable biofuels. However, the magnitude of the impact largely depends on the biofuel processing technology and the energy crop (feedstock) type.  相似文献   

16.
Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be ±0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.  相似文献   

17.
Biofuels from agricultural sources are an important part of California's strategy to reduce greenhouse gas emissions and dependence on foreign oil. Land conversion for agricultural and urban uses has already imperiled many animal species in the state. This study investigated the potential impacts on wildlife of shifts in agricultural activity to increase biomass production for transportation fuels. We applied knowledge of the suitability of California's agricultural landscapes for wildlife species to evaluate wildlife effects associated with plausible scenarios of expanded production of three potential biofuel crops (sugar beets, bermudagrass, and canola). We also generated alternative, spatially explicit scenarios that minimized loss of habitat for the same level of biofuel production. We explored trade‐offs to compare the marginal changes per unit of energy for transportation costs, wildlife, land and water‐use, and total energy produced, and found that all five factors were influenced by crop choice. Sugar beet scenarios require the least land area: 3.5 times less land per liter of gasoline equivalent than bermudagrass and five times less than canola. Canola scenarios had the largest impacts on wildlife but the greatest reduction in water use. Bermudagrass scenarios resulted in a slight overall improvement for wildlife over the current situation. Relatively minor redistribution of lands converted to biofuel crops could produce the same energy yield with much less impact on wildlife and very small increases in transportation costs. This framework provides a means to systematically evaluate potential wildlife impacts of alternative production scenarios and could be a useful complement to other frameworks that assess impacts on ecosystem services and greenhouse gas emissions.  相似文献   

18.
To estimate fossil fuel demand and greenhouse gas emissions associated with short-rotation willow (Salix spp.) crops in New York State, we constructed a life cycle assessment model capable of estimating point values and measures of variability for a number of key processes across eight management scenarios. The system used 445.0 to 1,052.4 MJ of fossil energy per oven-dry tonne (odt) of delivered willow biomass, resulting in a net energy balance of 18.3:1 to 43.4:1. The largest fraction of the energy demand across all scenarios was driven by the use of diesel fuels. The largest proportion of diesel fuel was associated with harvesting and delivery of willow chips seven times on 3-year rotations over the life of the crop. Similar patterns were found for greenhouse gas emissions across all scenarios, as fossil fuel use served as the biggest source of emissions in the system. Carbon sequestration in the belowground portion of the willow system provided a large carbon sink that more than compensated for carbon emissions across all scenarios, resulting in final greenhouse gas balances of ?138.4 to ?52.9 kg CO2 eq. per odt biomass. The subsequent uncertainty analyses revealed that variability associated with data on willow yield, litterfall, and belowground biomass eliminated some of the differences between the tested scenarios. Even with the inclusion of uncertainty analysis, the willow system was still a carbon sequestration system after a single crop cycle (seven 3-year rotations) in all eight scenarios. A better understanding and quantification of factors that drive the variability in the biological portions of the system is necessary to produce more precise estimates of the emissions and energy performance of short-rotation woody crops.  相似文献   

19.
SWAT watershed model simulated biomass yield and pollutant loadings were integrated with associated economic costs of farm production and transport to study two dedicated energy crops, switchgrass and Miscanthus, and corn stover, as feedstocks for a cellulosic biorefinery. A multi-level spatial optimization (MLSOPT) framework was employed to get spatially explicit cropping plans for a watershed under the assumption that the watershed supplies biomass to a hypothetical biorefinery considering both the biochemical and the thermochemical conversion pathways. Consistent with previous studies, the perennial grasses had higher biomass yield than corn stover, with considerably lower sediment, nitrogen, and phosphorus loadings, but their costs were higher. New insights were related to the tradeoffs between cost, feedstock production, and the level and form of environmental quality society faces as it implements the Renewable Fuel Standard. Economically, this involved calculating the farthest distance a biorefinery would be willing to drive to source corn residue before procuring a single unit of perennial grasses from productive agricultural soils.  相似文献   

20.
Accurate quantification of reaction products formed during thermochemical pretreatment of lignocellulosic biomass would lead to a better understanding of plant cell wall deconstruction for production of cellulosic biofuels and biochemicals. However, quantification of some process byproducts, most notably acetamide, acetic acid and furfural, present several analytical challenges using conventional liquid chromatography methods. Therefore, we have developed a high-throughput gas chromatography based mass spectrometric (GC-MS) method in order to quantify relevant compounds without requiring time-consuming sample derivatization prior to analysis. Solvent extracts of untreated, ammonia fiber expansion (AFEX) treated and dilute-acid treated corn stover were analyzed by this method. Biomass samples were extracted with acetone using an automated solvent extractor, serially diluted and directly analyzed using the proposed GC-MS method. Acetone was the only solvent amongst water, methanol and acetonitrile that did not contain detectable background levels of the target compounds or facilitate a buildup of plant-derived residues in the GC injector, which decreased analytical reproducibility. Quantitative results were based on the method of standard addition and external standard calibration curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号