首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Ca(2+)-dependent agonists, such as carbachol (CCh), stimulate epidermal growth factor receptor (EGFR) transactivation and mitogen-activated protein kinase activation in T(84) intestinal epithelial cells. This pathway constitutes an antisecretory mechanism by which CCh-stimulated chloride secretion is limited. Here, we investigated mechanisms underlying CCh-stimulated epidermal growth factor receptor (EGFR) transactivation. Thapsigargin (TG, 2 microM) stimulated EGFR and extracellular signal-regulated kinase (ERK) phosphorylation in T(84) cells. Inhibition of either EGFR or ERK activation, with tyrphostin AG1478 (1 microM) and PD 98059 (20 microM), respectively, potentiated chloride secretory responses to TG, as measured by changes in short-circuit current (I(sc)) across T(84) cells. CCh (100 microM) stimulated tyrosine phosphorylation and association of the Ca(2+)-dependent tyrosine kinase, PYK-2, with the EGFR, which was inhibited by the Ca(2+) chelator, BAPTA (20 microM). The calmodulin inhibitor, fluphenazine (50 microM) inhibited CCh-stimulated PYK-2 association with the EGFR and phosphorylation of EGFR and ERK. CCh also induced tyrosine phosphorylation of p60(src) and association of p60(src) with both PYK-2 and the EGFR. The Src family kinase inhibitor, PP2 (20 nM-20 microM) attenuated CCh-stimulated EGFR and ERK phosphorylation and potentiated chloride secretory responses to CCh. We conclude that CCh-stimulated transactivation of the EGFR is mediated by a pathway involving elevations in intracellular Ca(2+), calmodulin, PYK-2, and p60(src). This pathway represents a mechanism that limits CCh-stimulated chloride secretion across intestinal epithelia.  相似文献   

2.
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.  相似文献   

3.
IFN-gamma inhibits intestinal Cl(-) secretion, in part via downregulation of CFTR and Na(+)-K(+)-ATPase activity and expression, but the proximal signaling events were unknown. We have shown that transforming growth factor-alpha (TGF-alpha) inhibits calcium-activated Cl(-) secretion, and effects of IFN-gamma in other systems are mediated via EGF family members. We tested whether IFN-gamma inhibits Cl(-) secretion via EGF receptor (EGFr) activation. IFN-gamma increased tyrosine phosphorylation in T84 cells at 24 h, including the EGFr. IFN-gamma also increased cell-associated pro-TGF-alpha, as well as free TGF-alpha in the bathing media. However, whereas IFN-gamma significantly inhibited carbachol-induced Cl(-) secretion, neither neutralizing antibodies to TGF-alpha nor an EGFr inhibitor (1 microM tyrphostin AG 1478) were able to reverse this inhibitory effect. AG 1478 also failed to reverse IFN-gamma-induced tyrosine phosphorylation of the EGFr, but receptor phosphorylation was attenuated by both the neutralizing antibody to TGF-alpha and PP2, a Src kinase inhibitor. Moreover, PP2 reversed the inhibitory effect of IFN-gamma on Cl(-) secretion. In total, our findings suggest an increase in functional TGF-alpha and activation of the EGFr in response to IFN-gamma. The release of TGF-alpha and intracellular Src activation likely combine to mediate EGFr phosphorylation, but only Src appears to contribute to the inhibition of transport. Nevertheless, because TGF-alpha plays a role in restitution and repair of the intestinal epithelium after injury, we speculate that these findings reflect a feedback loop whereby IFN-gamma modulates the extent of cytokine-induced intestinal damage.  相似文献   

4.
We have previously shown that Gq protein-coupled receptor (GqPCR) agonists stimulate epidermal growth factor receptor (EGFr) transactivation and activation of mitogen-activated protein kinases (MAPK) in colonic epithelial cells. This constitutes a mechanism by which Cl- secretory responses to GqPCR agonists are limited. In the present study we examined a possible role for the EGFr in regulating Cl- secretion stimulated by agonists that act through GsPCRs. All experiments were performed using monolayers of T84 colonic epithelial cells grown on permeable supports. Protein phosphorylation and protein-protein interactions were analyzed by immunoprecipitation and Western blotting. Cl- secretion was measured as changes in short-circuit current (DeltaIsc) across voltage-clamped T84 cells. The GsPCR agonist, vasoactive intestinal polypeptide (VIP; 100 nM), rapidly stimulated EGFr phosphorylation in T84 cells. This effect was mimicked by a cell-permeant analog of cAMP, Bt2cAMP/AM (3 microM), and was attenuated by the protein kinase A (PKA) inhibitor, H-89 (20 microM). The EGFr inhibitor, tyrphostin AG1478 (1 microM), inhibited both Bt2cAMP/AM-stimulated EGFr phosphorylation and Isc responses. VIP and Bt2cAMP/AM both stimulated ERK MAPK phosphorylation and recruitment of the p85 subunit of phosphatidylinositol 3-kinase (PI3K) to the EGFr in a tyrphostin AG1478-sensitive manner. The PI3K inhibitor, wortmannin (50 nM), but not the ERK inhibitor, PD 98059 (20 microM), attenuated Bt2cAMP/AM-stimulated secretory responses. We conclude that GsPCR agonists rapidly transactivate the EGFr in T84 cells by a signaling pathway involving cAMP and PKA. Through a mechanism that likely involves PI3K, transactivation of the EGFr is required for the full expression of cAMP-dependent Cl- secretory responses.  相似文献   

5.
We have previously demonstrated that epidermal growth factor (EGF) inhibits calcium-dependent chloride secretion via a mechanism involving stimulation of phosphatidylinositol 3-kinase (PI3-K). The muscarinic agonist of chloride secretion, carbachol (CCh), also stimulates an antisecretory pathway that involves transactivation of the EGF receptor (EGFR) but does not involve PI3-K. Here, we have examined if ErbB receptors, other than the EGFR, have a role in regulation of colonic secretion and if differential effects on ErbB receptor activation may explain the ability of the EGFR to propagate diverse signaling pathways in response to EGF versus CCh. Basolateral, but not apical, addition of the ErbB3/ErbB4 ligand alpha-heregulin (HRG; 1-100 ng/ml) inhibited secretory responses to CCh (100 microM) across voltage-clamped T(84) epithelial cells. Immunoprecipitation/Western blot studies revealed that HRG (100 ng/ml) stimulated tyrosine phosphorylation and dimerization of ErbB3 and ErbB2, but had no effect on phosphorylation of the EGFR. HRG also stimulated recruitment of the p85 subunit of PI3-K to ErbB3/ErbB2 receptor dimers, while the PI3-K inhibitor, wortmannin (50 nM), completely reversed the inhibitory effect of HRG on CCh-stimulated secretion. Further studies revealed that, while both EGF (100 ng/ml) and CCh (100 microM) stimulated phosphorylation of the EGFR, only EGF stimulated phosphorylation of ErbB2, and neither stimulated ErbB3 phosphorylation. EGF, but not CCh, stimulated the formation of EGFR/ErbB2 receptor dimers and the recruitment of p85 to ErbB2. We conclude that ErbB2 and ErbB3 are expressed in T(84) cells and are functionally coupled to inhibition of calcium-dependent chloride secretion. Differential dimerization with other ErbB family members may underlie the ability of the EGFR to propagate diverse inhibitory signals in response to activation by EGF or transactivation by CCh.  相似文献   

6.
Serine proteases are now considered as crucial contributors to the development of human colon cancer. We have shown recently that thrombin is a potent growth factor for colon cancer cells through activation of the aberrantly expressed protease-activated receptor 1 (PAR1). Here, we analyzed the signaling pathways downstream of PAR1 activation, which lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events on activation of PAR1 by thrombin or specific activating peptide: (a) a matrix metalloproteinase-dependent release of transforming growth factor-alpha (TGF-alpha) as shown with TGF-alpha blocking antibodies and measurement of TGF-alpha in culture medium; (b) TGF-alpha-mediated activation of epidermal growth factor receptor (EGFR) and subsequent EGFR phosphorylation; and (c) activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and subsequent cell proliferation. The links between these events are shown by the fact that stimulation of cell proliferation and ERK1/2 on activation of PAR1 is reversed by the MMP inhibitor batimastat, TGF-alpha neutralizing antibodies, EGFR ligand binding domain blocking antibodies, and the EGFR tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGFR seems to be a major mechanism whereby activation of PAR1 results in colon cancer cell growth. Finally, PAR1 activation induces Src phosphorylation, which is reversed by using the Src tyrosine kinase inhibitor PP2, suggesting that Src activation plays a permissive role for PAR1-mediated ERK1/2 activation and cell proliferation probably acting downstream of the EGFR. These data explain how thrombin exerts robust trophic action on colon cancer cells and underline the critical role of EGFR transactivation.  相似文献   

7.
Impairment of epithelial barrier is observed in various intestinal disorders including inflammatory bowel diseases (IBD). Numerous factors may cause temporary damage of the intestinal epithelium. A complex network of highly divergent factors regulates healing of the epithelium to prevent inflammatory response. However, the exact repair mechanisms involved in maintaining homeostatic intestinal barrier integrity remain to be clarified.In this study, we demonstrate that activation of M1 muscarinic acetylcholine receptor (mAChR) augments the restitution of epithelial barrier function in T84 cell monolayers after ethanol-induced epithelial injury, via ERK-dependent phosphorylation of focal adhesion kinase (FAK). We have shown that ethanol injury decreased the transepithelial electrical resistance (TER) along with the reduction of ERK and FAK phosphorylation. Carbachol (CCh) increased ERK and FAK phosphorylation with enhanced TER recovery, which was completely blocked by either MT-7 (M1 antagonist) or atropine. The CCh-induced enhancement of TER recovery was also blocked by either U0126 (ERK pathway inhibitor) or PF-228 (FAK inhibitor). Treatment of T84 cell monolayers with interferon-γ (IFN-γ) impaired the barrier function with the reduction of FAK phosphorylation. The CCh-induced ERK and FAK phosphorylation were also attenuated by the IFN-γ treatment. Immunological and binding experiments exhibited a significant reduction of M1 mAChR after IFN-γ treatment. The reduction of M1 mAChR in inflammatory area was also observed in surgical specimens from IBD patients, using immunohistochemical analysis. These findings provide important clues regarding mechanisms by which M1 mAChR participates in the maintenance of intestinal barrier function under not only physiological but also pathological conditions.  相似文献   

8.
We havepreviously shown that Ca2+-dependent Clsecretion across intestinal epithelial cells is limited by a signalingpathway involving transactivation of the epidermal growth factorreceptor (EGFR) and activation of ERK mitogen-activated protein kinase (MAPK). Here, we have investigated a possible role for p38 MAPK inregulation of Ca2+-dependent Cl secretion.Western blot analysis of T84 colonic epithelial cells revealed that the muscarinic agonist carbachol (CCh; 100 µM)stimulated phosphorylation and activation of p38 MAPK. The p38inhibitor SB-203580 (10 µM) potentiated and prolonged short-circuitcurrent (Isc) responses to CCh acrossvoltage-clamped T84 cells to 157.4 ± 6.9% of thosein control cells (n = 21; P < 0.001).CCh-induced p38 phosphorylation was attenuated by the EGFR inhibitortyrphostin AG-1478 (0.1 nM-10 µM) and by the Src family kinaseinhibitor PP2 (20 nM-2 µM). The effects of CCh on p38phosphorylation were mimicked by thapsigargin (TG; 2 µM), whichspecifically elevates intracellular Ca2+, and wereabolished by the Ca2+ chelator BAPTA-AM (20 µM), implyinga role for intracellular Ca2+ in mediating p38 activation.SB-203580 (10 µM) potentiated Isc responses toTG to 172.4 ± 18.1% of those in control cells (n = 18; P < 0.001). When cells were pretreated withSB-203580 and PD-98059 to simultaneously inhibit p38 and ERK MAPKs,respectively, Isc responses to TG and CCh weresignificantly greater than those observed with either inhibitor alone.We conclude that Ca2+-dependent agonists stimulate p38 MAPKin T84 cells by a mechanism involving intracellularCa2+, Src family kinases, and the EGFR. CCh-stimulated p38activation constitutes a similar, but distinct and complementary,antisecretory signaling pathway to that of ERK MAPK.

  相似文献   

9.
Several lines of evidence suggest that tumor-derived trypsin contributes to the growth and invasion of cancer cells. We have recently shown that trypsin is a potent growth factor for colon cancer cells through activation of the G protein-coupled receptor protease-activated receptor 2 (PAR2). Here, we analyzed the signaling pathways downstream of PAR2 activation that lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events upon activation of PAR2 by the serine protease trypsin or the specific PAR2-activating peptide (AP2): (i) a matrix metalloproteinase-dependent release of transforming growth factor (TGF)-alpha, as demonstrated with TGF-alpha-blocking antibodies and measurement of TGF-alpha in culture medium; (ii) TGF-alpha-mediated activation of epidermal growth factor receptor (EGF-R) and subsequent EGF-R phosphorylation; and (iii) activation of ERK1/2 and subsequent cell proliferation. The links between these events are demonstrated by the fact that stimulation of cell proliferation and ERK1/2 upon activation of PAR2 is reversed by the metalloproteinase inhibitor batimastat, TGF-alpha-neutralizing antibodies, EGF-R ligand binding domain-blocking antibodies, and the EGF-R tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGF-R appears to be a major mechanism whereby activation of PAR2 results in colon cancer cell growth. By using the Src tyrosine kinase inhibitor PP2, we further showed that Src plays a permissive role for PAR2-mediated ERK1/2 activation and cell proliferation, probably acting downstream of the EGF-R. These data explain how trypsin exerts robust trophic action on colon cancer cells and underline the critical role of EGF-R transactivation.  相似文献   

10.
Communication between receptor tyrosine kinase and G protein-coupled receptor (GPCR)-mediated signaling is recognized as a common integrator linking diverse aspects of intracellular signaling systems. Here, we report that G protein-coupled beta-adrenergic receptor activation leading to stimulation of salivary phospholipid release occurs with the involvement of epidermal growth factor receptor (EGFR). Using sublingual gland acinar cells, we show that prosecretory effect of isoproterenol on phospholipid release was subjected to suppression by EGFR kinase inhibitor, PD153035, and wortmannin, an inhibitor of PI3K, but not by PD98059, an inhibitor of extracellular signal regulated kinase (ERK). Furthermore, wortmannin, but not the ERK inhibitor, caused the reduction in the acinar cell secretory responses to beta-adrenergic agonist-generated cAMP as well as adenyl cyclase activator, forskolin. The acinar cell phospholipid secretory responses to isoproterenol, moreover, were inhibited by PP2, a selective inhibitor of tyrosine kinase Src responsible for ligand-independent EGFR phosphorylation. Taken together, our data are the first to demonstrate the requirement for Src kinase-dependent EGFR transactivation in regulation of salivary phospholipid secretion in response to beta-adrenergic GPCR activation.  相似文献   

11.
Insulin-like growth factor-I (IGF-I) plays an important role in proliferation of vascular smooth muscle cells (VSMCs). However, the mechanism that IGF-I induces VSMCs proliferation is not completely understood. In this study, we determined (a) whether and how IGF-I induces transactivation of epidermal growth factor receptor (EGFR) in primary rat aortic VSMCs, (b) the contribution of EGFR to IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK) and cell proliferation, and (c) the role of reactive oxygen species (ROS) in the cellular function. We showed that IGF-I induced phosphorylation of EGFR and ERK1/2 in VSMCs. AG1478, an EGFR inhibitor, inhibited IGF-I-induced phoshorylation of EGFR and ERK1/2. IGF-I stimulated ROS production and Src activation. Antioxidants inhibited IGF-I-induced ROS generation and activation of EGFR, ERK, and Src. Src kinase inhibitor PP1 and Src siRNA blocked IGF-I-induced activation of EGFR and ERK1/2. Inhibition of IGF-I-stimulated EGFR activation inhibited IGF-I-induced VSMC proliferation. These results suggest that (1) IGF-I induces EGFR activation through production of ROS and ROS-mediated Src activation in VSMCs, and (2) EGFR transactivation is required for IGF-I-induced VSMC proliferation.  相似文献   

12.
Hepatocyte growth factor (HGF) influences several components of the angiogenic response, including endothelial cell migration. While recent studies indicate a crucial role of HGF in brain angiogenesis, the signaling pathways that regulate brain endothelial cell migration by HGF remain uncharacterized. Herein, we report that HGF stimulated human brain microvascular endothelial cell (HBMEC) migration in a dose- and time-dependent manner. Challenge of HBMECs with HGF activated the c-jun amino-terminal kinase (JNK), increased phosphorylation of the proline-rich tyrosine kinase 2 (Pyk-2) at Tyr(402) and activated c-Src. Inhibition of JNK by SP600125 or expression of a dominant negative JNK1 construct abrogated the migratory response of HBMECs to HGF. Treatment of HBMECs with the Src inhibitor PP2 markedly decreased HGF-stimulated JNK activation and migration to HGF. Moreover, expression of a mutant Pyk-2 construct prevented HGF-induced Pyk-2 phosphorylation at Tyr(402) and stimulation of HBMEC migration. Next, we examined activation of the extracellular signal regulated kinase (ERK) pathway. Stimulation of HBMECs by HGF led to rapid activation of ERK1/2, phosphorylation of Raf-1 at Ser(338) and Tyr(340/341) and MEK1/2 at Ser(222). Moreover, inhibition of ERK activation by UO126 and PD98059 markedly decreased HGF-stimulated HBMEC migration. HGF also activated AKT, while inhibition of AKT by LY294002 induced a modest decrease of HGF-induced HBMEC migration. These results highlight a model whereby JNK and ERK play a critical role in regulation of brain endothelial cell migration by HGF.  相似文献   

13.
Recent advances in understanding the nature of cellular responses mediated by G protein-coupled receptor (GPCR) activation indicate that integration of the converging regulatory signals into functional cellular pathways requires epidermal growth factor receptor (EGFR) transactivation. In this study, we report that G protein-coupled beta-adrenergic receptor activation leading to stimulation in gastric mucus phospholipid secretion occurs with the involvement of EGFR. Using [14C]choline-labeled gastric mucosal cells in culture, we show that stimulatory effect of beta-adrenergic agonist, isoproterenol, on phospholipid release was subject to a dose-dependent suppression by EGFR kinase inhibitor, PD153035, as well as wortmannin, a specific inhibitor of PI3K. Both inhibitors, moreover, caused the reduction in the gastric mucosal cell phospholipid secretory responses to beta-adrenergic agonist-generated second messenger, cAMP as well as adenyl cyclase activator, forskolin. The gastric mucosal phospholipid secretory responses to isoproterenol, furthermore, were inhibited by PP2, a selective inhibitor of tyrosine kinase Src responsible for ligand-independent EGFR phosphorylation, but not by ERK inhibitor, PD98059. The inhibition of ERK, moreover, did not cause attenuation in phospholipid secretory responses to cAMP and forskolin. The findings underline the central role of EGFR in mediation of gastric mucosal secretory processes, and demonstrate the requirement for Src kinase-dependent EGFR transactivation in regulation of gastric mucosal phospholipid secretion in response to beta-adrenergic GPCR activation.  相似文献   

14.
Stimulation of the angiotensin II (Ang II) type 1 receptor (AT1-R) causes phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) via epidermal growth factor receptor (EGF-R) transactivation-dependent or -independent pathways in Ang II target cells. Here we examined the mechanisms involved in agonist-induced EGF-R transactivation and subsequent ERK1/2 phosphorylation in clone 9 (C9) hepatocytes, which express endogenous AT1-R, and COS-7 and human embryonic kidney (HEK) 293 cells transfected with the AT1-R. Ang II-induced ERK1/2 activation was attenuated by inhibition of Src kinase and of matrix metalloproteinases (MMPs) in C9 and COS-7 cells, but not in HEK 293 cells. Agonist-mediated MMP activation in C9 cells led to shedding of heparin-binding EGF (HB-EGF) and stimulation of ERK1/2 phosphorylation. Blockade of HB-EGF action by neutralizing antibody or its selective inhibitor, CRM197, attenuated ERK1/2 activation by Ang II. Consistent with its agonist action, HB-EGF stimulation of these cells caused marked phosphorylation of the EGF-R and its adapter molecule, Shc, as well as ERK1/2 and its dependent protein, p90 ribosomal S6 kinase, in a manner similar to that elicited by Ang II or EGF. Although the Tyr319 residue of the AT1-R has been proposed to be an essential regulator of EGF-R transactivation, stimulation of wild-type and mutant (Y319F) AT1-R expressed in COS-7 cells caused EGF-R transactivation and subsequent ERK1/2 phosphorylation through release of HB-EGF in a Src-dependent manner. In contrast, the noninvolvement of MMPs in HEK 293 cells, which may reflect the absence of Src activation by Ang II, was associated with lack of transactivation of the EGF-R. These data demonstrate that the individual actions of Ang II on EGF-R transactivation in specific cell types are related to differential involvement of MMP-dependent HB-EGF release.  相似文献   

15.
Numerous external stimuli, including G protein-coupled receptor agonists, cytokines, growth factors, and steroids activate mitogen-activated protein kinases (MAPKs) through phosphorylation of the epidermal growth factor receptor (EGF-R). In immortalized hypothalamic neurons (GT1-7 cells), agonist binding to the gonadotropin-releasing hormone receptor (GnRH-R) causes phosphorylation of MAPKs that is mediated by protein kinase C (PKC)-dependent transactivation of the EGF-R. An analysis of the mechanisms involved in this process showed that GnRH stimulation of GT1-7 cells causes release/shedding of the soluble ligand, heparin binding epidermal growth factor (HB-EGF), as a consequence of metalloprotease activation. GnRH-induced phosphorylation of the EGF-R and, subsequently, of Shc, ERK1/2, and its dependent protein, p90RSK-1 (p90 ribosomal S6 kinase 1 or RSK-1), was abolished by metalloprotease inhibition. Similarly, blockade of the effect of HB-EGF with the selective inhibitor CRM197 or a neutralizing antibody attenuated signals generated by GnRH and phorbol 12-myristate 13-acetate, but not those stimulated by EGF. In contrast, phosphorylation of the EGF-R, Shc, and ERK1/2 by EGF and HB-EGF was independent of PKC and metalloprotease activity. The signaling characteristics of HB-EGF closely resembled those of GnRH and EGF in terms of the phosphorylation of EGF-R, Shc, ERK1/2, and RSK-1 as well as the nuclear translocation of RSK-1. However, neither the selective Src kinase inhibitor PP2 nor the overexpression of negative regulatory Src kinase and dominant negative Pyk2 had any effect on HB-EGF-induced responses. In contrast to GT1-7 cells, human embryonic kidney 293 cells expressing the GnRH-R did not exhibit metalloprotease induction and EGF-R transactivation during GnRH stimulation. These data indicate that the GnRH-induced transactivation of the EGF-R and the subsequent ERK1/2 phosphorylation result from ectodomain shedding of HBEGF through PKC-dependent activation of metalloprotease(s) in neuronal GT1-7 cells.  相似文献   

16.
The duration as well as the magnitude of mitogen-activated protein kinase activation has been proposed to regulate gene expression and other specific intracellular responses in individual cell types. Activation of ERK1/2 by the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) is relatively sustained in alpha T3-1 pituitary gonadotropes and HEK293 cells but is transient in immortalized GT1-7 neurons. Each of these cell types expresses the epidermal growth factor receptor (EGFR) and responds to EGF stimulation with significant but transient ERK1/2 phosphorylation. However, GnRH-induced ERK1/2 phosphorylation caused by EGFR transactivation was confined to GT1-7 cells and was attenuated by EGFR kinase inhibition. Neither EGF nor GnRH receptor activation caused translocation of phospho-ERK1/2 into the nucleus in GT1-7 cells. In contrast, agonist stimulation of GnRH receptors expressed in HEK293 cells caused sustained phosphorylation and nuclear translocation of ERK1/2 by a protein kinase C-dependent but EGFR-independent pathway. GnRH-induced activation of ERK1/2 was attenuated by the selective Src kinase inhibitor PP2 and the negative regulatory C-terminal Src kinase in GT1-7 cells but not in HEK293 cells. In GT1-7 cells, GnRH stimulated phosphorylation and nuclear translocation of the ERK1/2-dependent protein, p90RSK-1 (RSK-1). These results indicate that the duration of ERK1/2 activation depends on the signaling pathways utilized by GnRH in specific target cells. Whereas activation of the Gq/protein kinase C pathway in HEK293 cells causes sustained phosphorylation and translocation of ERK1/2 to the nucleus, transactivation of the EGFR by GnRH in GT1-7 cells elicits transient ERK1/2 signals without nuclear accumulation. These findings suggest that transactivation of the tightly regulated EGFR can account for the transient ERK1/2 responses that are elicited by stimulation of certain G protein-coupled receptors.  相似文献   

17.
Ca(2+)-regulated heat-stable protein of 28 kDa (CRHSP-28; a member of the tumor protein D52 family) is highly expressed in exocrine glands and was shown to regulate digestive enzyme secretion from pancreatic acinar cells. We found CRHSP-28 highly expressed in cultured mucosal secretory T84 cells, consistent with an important regulatory role in apical membrane trafficking. Stimulation of cells with carbachol (CCh) induced rapid, concentration-dependent phosphorylation of CRHSP-28 on at least two serine residues. Isoelectric focusing and immunoblotting were used to characterize cellular mechanisms governing CRHSP-28 phosphorylation. Phosphorylation depends on elevated cellular Ca2+, being maximally induced by ionomycin and thapsigargin and fully inhibited by BAPTAAM. In vitro phosphorylation of recombinant CRHSP-28 was 10-fold greater by casein kinase II (CKII) than Ca2+/calmodulin-dependent protein kinase II (CaMKII). However, phosphopeptide mapping studies demonstrated that CaMKII induced an identical phosphopeptide profile to endogenous CRHSP-28 immunoprecipitated from T84 cells. Although calmodulin antagonists had no effect on CCh-stimulated phosphorylation, disruption of actin filaments by cytochalasin D inhibited phosphorylation by 50%. Confocal microscopy indicated that CRHSP-28 is expressed in perinuclear regions of cells and accumulates immediately below the apical membrane of polarized monolayers following CCh stimulation. CaMKII was also localized to the subapical cytoplasm and was clearly displaced following actin filament disruption. These data suggest that CRHSP-28 phosphorylation is regulated by a CaMKII-like enzyme and likely involves a translocation of the protein within the apical cytoplasm of epithelial cells.  相似文献   

18.
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.  相似文献   

19.
We have demonstrated earlier that lysophosphatidic acid (LPA)-induced interleukin-8 (IL-8) secretion is regulated by protein kinase Cdelta (PKCdelta)-dependent NF-kappaB activation in human bronchial epithelial cells (HBEpCs). Here we provide evidence for signaling pathways that regulate LPA-mediated transactivation of epidermal growth factor receptor (EGFR) and the role of cross-talk between G-protein-coupled receptors and receptor-tyrosine kinases in IL-8 secretion in HBEpCs. Treatment of HBEpCs with LPA stimulated tyrosine phosphorylation of EGFR, which was attenuated by matrix metalloproteinase (MMP) inhibitor (GM6001), heparin binding (HB)-EGF inhibitor (CRM 197), and HB-EGF neutralizing antibody. Overexpression of dominant negative PKCdelta or pretreatment with a PKCdelta inhibitor (rottlerin) or Src kinase family inhibitor (PP2) partially blocked LPA-induced MMP activation, proHB-EGF shedding, and EGFR tyrosine phosphorylation. Down-regulation of Lyn kinase, but not Src kinase, by specific small interfering RNA mitigated LPA-induced MMP activation, proHB-EGF shedding, and EGFR phosphorylation. In addition, overexpression of dominant negative PKCdelta blocked LPA-induced phosphorylation and translocation of Lyn kinase to the plasma membrane. Furthermore, down-regulation of EGFR by EGFR small interfering RNA or pretreatment of cells with EGFR inhibitors AG1478 and PD158780 almost completely blocked LPA-dependent EGFR phosphorylation and partially attenuated IL-8 secretion, respectively. These results demonstrate that LPA-induced IL-8 secretion is partly dependent on EGFR transactivation regulated by PKCdelta-dependent activation of Lyn kinase and MMPs and proHB-EGF shedding, suggesting a novel mechanism of cross-talk and interaction between G-protein-coupled receptors and receptor-tyrosine kinases in HBEpCs.  相似文献   

20.
We examined the stimulus-secretion pathways whereby proteinase-activated receptor 2 (PAR-2) stimulates Cl(-) secretion in intestinal epithelial cells. SCBN and T84 epithelial monolayers grown on Snapwell supports and mounted in modified Ussing chambers were activated by the PAR-2-activating peptides SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2). Short-circuit current (I(sc)) was used as a measure of net electrogenic ion transport. Basolateral, but not apical, application of SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2) caused a concentration-dependent change in I(sc) that was significantly reduced in Cl(-)-free buffer and by the intracellular Ca(2+) blockers thapsigargin and BAPTA-AM, but not by the Ca(2+) channel blocker verapamil. Inhibitors of PKA (H-89) and CFTR (glibenclamide) also significantly reduced PAR-2-stimulated Cl(-) transport. PAR-2 activation was associated with increases in cAMP and intracellular Ca(2+). Immunoblot analysis revealed increases in phosphorylation of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase, Src, Pyk2, cRaf, and ERK1/2 in response to PAR-2 activation. Pretreatment with inhibitors of cyclooxygenases (indomethacin), tyrosine kinases (genistein), EGFR (PD-153035), MEK (PD-98059 or U-0126), and Src (PP1) inhibited SLIGRL-NH(2)-induced increases in I(sc). Inhibition of Src, but not matrix metalloproteinases, reduced EGFR phosphorylation. Reduced EGFR phosphorylation paralleled the reduction in PAR-2-stimulated I(sc). We conclude that activation of basolateral, but not apical, PAR-2 induces epithelial Cl(-) secretion via cAMP- and Ca(2+)-dependent mechanisms. The secretory effect involves EGFR transactivation by Src, leading to subsequent ERK1/2 activation and increased cyclooxygenase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号