首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic-di-GMP is a bacterial second messenger that controls the switch between motile and sessile states. It is synthesized by proteins containing the enzymatic GGDEF domain and degraded by the EAL domain. Many bacterial genomes encode several copies of proteins containing these domains, raising questions on how the activities of parallel c-di-GMP signalling systems are segregated to avoid potentially deleterious cross-talk. Moreover, many ‘hybrid’ proteins contain both GGDEF and EAL domains; the relationship between the two apparently opposing enzymatic activities has been termed a ‘biochemical conundrum’. Here, we present a computational analysis of 11 248 GGDEF- and EAL-containing proteins in 867 prokaryotic genomes to address these two outstanding questions. Over half of these proteins contain a signal for cell-surface localization, and a majority accommodate a signal-sensing partner domain; these indicate widespread prevalence of post-translational regulation that may segregate the activities of proteins that are co-expressed. By examining the conservation of amino acid residues in the GGDEF and EAL catalytic sites, we show that there are predominantly two types of hybrid proteins. In the first, both sites are intact; an additional regulatory partner domain, present in most of these proteins, might determine the balance between the two enzymatic activities. In the second type, only the EAL catalytic site is intact; these—unlike EAL-only proteins—generally contain a signal-sensing partner domain, suggesting distinct modes of regulation for EAL activity under different sequence contexts. Finally, we discuss the role of proteins that have lost GGDEF and EAL catalytic sites as potential c-di-GMP-binding effectors. Our findings will serve as a genomic framework for interpreting ongoing molecular investigations of these proteins.  相似文献   

2.
Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl‐carrier proteins (PCPs) or acyl‐carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs. Proteins 2014; 82:1210–1218. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Site-specific recombinases XerC and XerD function in the segregation of circular bacterial replicons. In a recombining nucleoprotein complex containing two molecules each of XerC and XerD, coordinated reciprocal switches in recombinase activity ensure that only XerC or XerD is active at any one time. Mutated recombinases that carry sub?stitutions of a catalytic arginine residue stimulate cleavage and strand exchange mediated by the partner recombinase on DNA substrates that are normally recombined poorly by the partner. This is associated with a reciprocal impairment of the recombinase's own ability to initiate catalysis. The extent of this switch in catalysis is modulated by changes in recombination site sequence and is not a direct consequence of any catalytic defect. We propose that altered interactions between the mutated proteins and their wild-type partners lead to an increased level of an alternative Holliday junction intermediate that has a conformation appropriate for resolution by the partner recombinase. The results indicate how subtle changes in protein-DNA architecture at a Holliday junction can redirect recombination outcome.  相似文献   

4.
The structural and catalytic similarities between modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) inspired us to search for hybrid NRPS-PKS systems. By examining the biochemical and genetic data known to date for the biosynthesis of hybrid peptide-polyketide natural products, we show (1) that the same catalytic sites are conserved between the hybrid NRPS-PKS and normal NRPS or PKS systems, although the ketoacyl synthase domain in NRPS/PKS hybrids is unique, and (2) that specific interpolypeptide linkers exist at both the C- and N-termini of the NRPS and PKS proteins, which presumably play a critical role in facilitating the transfer of the growing peptide or polyketide intermediate between NRPS and PKS modules in hybrid NRPS-PKS systems. These findings provide new insights for intermodular communications in hybrid NRPS-PKS systems and should now be taken into consideration in engineering hybrid peptide-polyketide biosynthetic pathways for making novel "unnatural" natural products.  相似文献   

5.
Pairing SOX off: with partners in the regulation of embryonic development   总被引:28,自引:0,他引:28  
The SOX family of high-mobility group (HMG) domain proteins has recently been recognized as a key player in the regulation of embryonic development and in the determination of the cell fate. In the case of certain SOX proteins, they regulate the target genes by being paired off with specific partner factors. This partnering might allow SOX proteins to act in a cell-specific manner, which is key to their role in cell differentiation. The focus of this article is the mechanism of action of SOX proteins, in particular, how SOX proteins specifically pair off with respective partner factors and, as a consequence, select distinct sets of genes as their regulatory targets.  相似文献   

6.
The murine cytomegalovirus (MCMV) proteins encoded by US22 genes M139, M140, and M141 function, at least in part, to regulate replication of this virus in macrophages. Mutant MCMV having one or more of these genes deleted replicates poorly in macrophages in culture and in the macrophage-dense environment of the spleen. In this report, we demonstrate the existence of stable complexes formed by the products of all three of these US22 genes, as well as a complex composed of the products of M140 and M141. These complexes form in the absence of other viral proteins; however, the pM140/pM141 complex serves as a requisite binding partner for the M139 gene products. Products from all three genes colocalize to a perinuclear region of the cell juxtaposed to or within the cis-Golgi region but excluded from the trans-Golgi region. Interestingly, expression of pM141 redirects pM140 from its predominantly nuclear residence to the perinuclear, cytoplasmic locale where these US22 proteins apparently exist in complex. Thus, complexing of these nonessential, early MCMV proteins likely confers a function(s) independent of each individual protein and important for optimal replication of MCMV in its natural host.  相似文献   

7.
Muslin AJ  Xing H 《Cellular signalling》2000,12(11-12):703-709
14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic, and nutrient-sensing pathways. 14-3-3 proteins act by binding to partner proteins, and this binding often leads to the altered subcellular localization of the partner. 14-3-3 proteins promote the cytoplasmic localization of many binding partners, including the pro-apoptotic protein BAD and the cell cycle regulatory phosphatase Cdc25C, but they can also promote the nuclear localization of other partners, such as the catalytic subunit of telomerase (TERT). In some cases, 14-3-3 binding has no effect on the subcellular localization of a partner. 14-3-3 may affect the localization of a protein by interfering with the function of a nearby targeting sequence, such as a nuclear localization sequence (NLS) or a nuclear export sequence (NES), on the binding partner.  相似文献   

8.
Livestock infection by the parasitic fluke Fasciola hepatica causes major economic losses worldwide. The excretory-secretory (ES) products produced by F. hepatica are key players in understanding the host-parasite interaction and offer targets for chemo- and immunotherapy. For the first time, subproteomics has been used to compare ES products produced by adult F. hepatica in vivo, within ovine host bile, with classical ex host in vitro ES methods. Only cathepsin L proteases from F. hepatica were identified in our ovine host bile preparations. Several host proteins were also identified including albumin and enolase with host trypsin inhibitor complex identified as a potential biomarker for F. hepatica infection. Time course in vitro analysis confirmed cathepsin L proteases as the major constituents of the in vitro ES proteome. In addition, detoxification proteins (glutathione transferase and fatty acid-binding protein), actin, and the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase were all identified in vitro. Western blotting of in vitro and in vivo ES proteins showed only cathepsin L proteases were recognized by serum pooled from F. hepatica-infected animals. Other liver fluke proteins released during in vitro culture may be released into the host bile environment via natural shedding of the adult fluke tegument. These proteins may not have been detected during our in vivo analysis because of an increased bile turnover rate and may not be recognized by pooled liver fluke infection sera as they are only produced in adults. This study highlights the difficulties identifying authentic ES proteins ex host, and further confirms the potential of the cathepsin L proteases as therapy candidates.  相似文献   

9.
The structural assignment of new natural product molecules supports research in a multitude of disciplines that may lead to new therapeutic agents and or new understanding of disease biology. However, reports of numerous structural revisions, even of recently elucidated natural products, inspired the present survey of techniques used in structural misassignments and subsequent revisions in the context of constitutional or configurational errors. Given the comparatively recent development of marine natural products chemistry, coincident with modern spectroscopy, it is of interest to consider the relative roles of spectroscopy and chemical synthesis in the structure elucidation and revision of those marine natural products that were initially misassigned. Thus, a tabulated review of all marine natural product structural revisions from 2005 to 2010 is organized according to structural motif revised. Misassignments of constitution are more frequent than perhaps anticipated by reliance on HMBC and other advanced NMR experiments, especially when considering the full complement of all natural products. However, these techniques also feature prominently in structural revisions, specifically of marine natural products. Nevertheless, as is the case for revision of relative and absolute configuration, total synthesis is a proven partner for marine, as well as terrestrial, natural products structure elucidation. It also becomes apparent that considerable 'detective work' remains in structure elucidation, in spite of the spectacular advances in spectroscopic techniques.  相似文献   

10.
Intracellular traffic is often controlled not by highways, but by handshakes and partner introductions within a cellular network. Recently determined structures suggest how signal sequences are recognized and how the GTP affinities of the signal recognition particle and its receptor are coupled to the targeting of ribosomes to translocational membrane pores. The structure of signal peptidase suggests how it releases functional proteins.  相似文献   

11.
Helicases are a ubiquitous and abundant group of motor proteins that couple NTP binding and hydrolysis to processive unwinding of nucleic acids. By targeting this activity to a wide range of specific substrates, and by coupling it with other catalytic functionality, helicases fulfil diverse roles in virtually all aspects of nucleic acid metabolism. The present review takes a look back at our efforts to elucidate the molecular mechanisms of UvrD-like DNA helicases. Using these well-studied enzymes as examples, we also discuss how helicases are programmed by interactions with partner proteins to participate in specific cellular functions.  相似文献   

12.
Bioactive natural products from endophytes: a review   总被引:2,自引:0,他引:2  
Endophytes, microorganisms that reside in the internal tissues of living plants without causing any immediate overt negative effects, have been found in every plant species examined to date and recognized as potential sources of novel natural products for exploitation in medicine, agriculture, and industry with more and more bioactive natural products isolated from the microorganisms. In this review, we focus mainly on bioactive natural products from endophytic microorganisms by their different functional roles. The prospect and facing problems of isolating natural products from endophytes are also discussed.  相似文献   

13.
Polyphenols, especially catechol-type polyphenols, exhibit lysyl oxidase–like activity and mediate oxidative deamination of lysine residues in proteins. Previous studies have shown that polyphenol-mediated oxidative deamination of lysine residues can be associated with altered electrical properties of proteins and increased crossreactivity with natural immunoglobulin M antibodies. This interaction suggested that oxidized proteins could act as innate antigens and elicit an innate immune response. However, the structural basis for oxidatively deaminated lysine residues remains unclear. In the present study, to establish the chemistry of lysine oxidation, we characterized oxidation products obtained via incubation of the lysine analog N-biotinyl-5-aminopentylamine with eggshell membranes containing lysyl oxidase and identified a unique six-membered ring 2-piperidinol derivative equilibrated with a ring-open product (aldehyde) as the major product. By monitoring these aldehyde–2-piperidinol products, we evaluated the lysyl oxidase–like activity of polyphenols. We also observed that this reaction was mediated by some polyphenols, especially o-diphenolic-type polyphenols, in the presence of copper ions. Interestingly, the natural immunoglobulin M monoclonal antibody recognized these aldehyde–2-piperidinol products as an innate epitope. These findings establish the existence of a dynamic equilibrium of oxidized lysine and provide important insights into the chemopreventive function of dietary polyphenols for chronic diseases.  相似文献   

14.
Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.  相似文献   

15.
Sox genes encode proteins related to each other, and to the sex determining gene Sry, by the presence of a DNA binding motif known as the HMG domain. Although HMG domains can bind to related DNA sequences, Sox gene products may achieve target gene specificity by binding to preferred target sequences or by interacting with specific partner proteins. To assess their functional similarities, we replaced the HMG box of Sry with the HMG box of Sox3 or Sox9 and tested whether these constructs caused sex reversal in XX mice. Our results indicate that such chimeric transgenes can functionally replace Sry and elicit development of testis cords, male patterns of gene expression, and elaboration of male secondary sexual characteristics. This implies that chimeric SRY proteins with SOX HMG domains can bind to and regulate SRY target genes and that potential SRY partner factor interactions are not disrupted by HMG domain substitutions. genesis 28:111-124, 2000.  相似文献   

16.
Ubiquitination of proteins is now recognized to target proteins for degradation by the proteasome and for internalization into the lysosomal system, as well as to modify functions of some target proteins. Although much progress has been made in characterizing enzymes that link ubiquitin to proteins, our understanding of deubiquitinating enzymes is less developed. These enzymes are involved in processing the products of ubiquitin genes which all encode fusion proteins, in negatively regulating the functions of ubiquitination (editing), in regenerating free ubiquitin after proteins have been targeted to the proteasome or lysosome (recycling) and in salvaging ubiquitin from possible adducts formed with small molecule nucleophiles in the cell. A large number of genes encode deubiquitinating enzymes suggesting that many have highly specific and regulated functions. Indeed, recent findings provide strong support for the concept that ubiquitination is regulated by both specific pathways of ubiquitination and deubiquitination. Interestingly, many of these enzymes are localized to subcellular structures or to molecular complexes. These localizations play important roles in determining specificity of function and can have major influences on their catalytic activities. Future studies, particularly aimed at characterizing the interacting partners and potential substrates in these complexes as well as at determining the effects of loss of function of specific deubiquitinating enzymes will rapidly advance our understanding of the important roles of these enzymes as biological regulators.  相似文献   

17.
Enterokinase (EC 3.4.21.9) is a serine proteinase in the duodenum that exhibits specificity for the sequence (Asp)(4)-Lys. It converts trypsinogen to trypsin. Its high specificity for the recognition site makes enterokinase (EK) a useful tool for in vitro cleavage of fusion proteins. cDNA encoding the catalytic chain of Chinese bovine enterokinase was cloned and its encoding amino acid sequence is identical to the previously reported sequence although there are two one-base mutations which do not change the encoded amino acid. The EK catalytic subunit cDNA was cloned into plasmid pET32a, and fused downstream to the fusion partner thioredoxin (Trx) and the following DDDDK enterokinase recognition sequence. The recombinant bovine enterokinase catalytic subunit was expressed in Escherichia coli BL21(DE3), and most products existed in soluble form. After an in vivo autocatalytic cleavage of the recombinant Trx-EK catalytic domain fusion protein, intact, biologically active EK catalytic subunit was released from the fusion protein. The recombinant intact EK catalytic subunit was purified to homogeneity with a specific activity of 720 AUs/mg protein through ammonium sulfate precipitation, DEAE chromatography, and gel filtration. The purified intact EK catalytic subunit has a K(m) of 0.17 mM, and K(cat) is 20.8s(-1). From 100 ml flask culture, 4.3 mg pure active EK catalytic subunits were obtained.  相似文献   

18.
Non-ribosomal peptide synthetases (NRPSs) are multienzymes that produce complex natural metabolites with many applications in medicine and agriculture. They are composed of numerous catalytic domains that elongate and chemically modify amino acid substrates or derivatives and of non-catalytic carrier protein domains that can tether and shuttle the growing products to the different catalytic domains. The intrinsic flexibility of NRPSs permits conformational rearrangements that are required to allow interactions between catalytic and carrier protein domains. Their large size coupled to this flexibility renders these multi-domain proteins very challenging for structural characterization. Here, we summarize recent studies that offer structural views of multi-domain NRPSs in various catalytically relevant conformations, thus providing an increased comprehension of their catalytic cycle. A better structural understanding of these multienzymes provides novel perspectives for their re-engineering to synthesize new bioactive metabolites.  相似文献   

19.
CD44: from adhesion molecules to signalling regulators   总被引:2,自引:0,他引:2  
Cell-adhesion molecules, once believed to function primarily in tethering cells to extracellular ligands, are now recognized as having broader functions in cellular signalling cascades. The CD44 transmembrane glycoprotein family adds new aspects to these roles by participating in signal-transduction processes--not only by establishing specific transmembrane complexes, but also by organizing signalling cascades through association with the actin cytoskeleton. CD44 and its associated partner proteins monitor changes in the extracellular matrix that influence cell growth, survival and differentiation.  相似文献   

20.
A large number of cellular processes are mediated by protein-protein interactions, often specified by particular protein binding modules. PDZ domains make up an important class of protein-protein interaction modules that typically bind to the C-terminus of target proteins. These domains act as a scaffold where signaling molecules are linked to a multiprotein complex. Human glutaminase interacting protein (GIP), also known as tax interacting protein 1, is unique among PDZ domain-containing proteins because it is composed almost exclusively of a single PDZ domain rather than one of many domains as part of a larger protein. GIP plays pivotal roles in cellular signaling, protein scaffolding, and cancer pathways via its interaction with the C-terminus of a growing list of partner proteins. We have identified novel internal motifs that are recognized by GIP through combinatorial phage library screening. Leu and Asp residues in the consensus sequence were identified to be critical for binding to GIP through site-directed mutagenesis studies. Structure-based models of GIP bound to two different surrogate peptides determined from nuclear magnetic resonance constraints revealed that the binding pocket is flexible enough to accommodate either the smaller carboxylate (COO(-)) group of a C-terminal recognition motif or the bulkier aspartate side chain (CH(2)COO(-)) of an internal motif. The noncanonical ILGF loop in GIP moves in for the C-terminal motif but moves out for the internal recognition motifs, allowing binding to different partner proteins. One of the peptides colocalizes with GIP within human glioma cells, indicating that GIP might be a potential target for anticancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号