首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermotolerant yeast capable of fermenting xylose to xylitol at 40°C was isolated and identified as a strain of Debaryomyces hansenii by ITS sequencing. This paper reports the production of xylitol from D-xylose and sugarcane bagasse hemicellulose by free and Ca-alginate immobilized cells of D. hansenii. The efficiency of free and immobilized cells were compared for xylitol production from D-xylose and hemicellulose in batch culture at 40°C. The maximum xylitol produced by free cells was 68.6 g/L from 100 g/L of xylose, with a yield of 0.76 g/g and volumetric productivity 0.44 g/L/h. The yield of xylitol and volumetric productivity were 0.69 g/g and 0.28 g/L/h respectively from hemicellulosic hydrolysate of sugarcane bagasse after detoxification with activated charcoal and ion exchange resins. The Ca-alginate immobilized D. hansenii cells produced 73.8 g of xylitol from 100 g/L of xylose with a yield of 0.82 g/g and volumetric productivity of 0.46 g/L/h and were reused for five batches with steady bioconversion rates and yields.  相似文献   

2.
The effect of redox potential on xylitol production by Candida parapsilosis was investigated. The redox potential was found to be useful for monitoring the dissolved oxygen (DO) level in culture media, especially when the DO level was low. An increase in the agitation speed in a 5 L fermentor resulted in an increased culture redox potential as well as enhanced cell growth. Production of xylitol was maximized at a redox potential of 100 mV. As the initial cell concentration increased from 8 g/L to 30 g/L, the volumetric productivity of xylitol increased from 1.38 g/L. h to 4.62 g/L. h. A two-stage xylitol production strategy was devised, with stage 1 involving rapid production of cells under well-aerated conditions, and stage 2 involving cultivation with reduced aeration such that the culture redox potential was 100 mV. Using this technique, a final xylitol concentration of 180 g/L was obtained from a culture medium totally containing 254.5 g/L xylose in a 3,000 L pilot scale fermentor after 77 h fermentation. The volumetric productivity of xylitol during the fermentation was 2.34 g/L. h.  相似文献   

3.
Cells of Candida guilliermondii entrapped in Ca-alginate beads were used for xylitol production, from concentrated hemicellulose hydrolyzate of sugarcane bagasse, in a fluidized bed bioreactor (FBR). The maximum xylitol concentration 28.9 g xylitol/L was obtained at a high aeration rate of 600 mL/min after 70 h of fermentation, indicating that the use of high aeration rate in this system is favored for better oxygen transfer into the immobilized cells. The specific xylitol productivity and the xylitol yield were of 0.4 g xylitol/L.h and 0.58 g xylitol/g xylose respectively. The immobilization efficiency at the end of the fermentation was of 65 %. After 90 h of fermentation xylitol productivity and yield decreased to 0.25 g xylitol/L.h and 0.47 g xylitol/g xylose respectively, indicating the beginning of xylitol consumption by the yeast. The use of FBR system with immobilized cells presented high xylitol yield and productivity.  相似文献   

4.
The biotransformation of D-arabitol into xylitol was investigated with focus on the conversion of D-xylulose into xylitol. This critical conversion was accomplished using Escherichia coli to co-express a xylitol dehydrogenase gene from Gluconobacter oxydans and a cofactor regeneration enzyme gene which was a glucose dehydrogenase gene from Bacillus subtilis for system 1 and an alcohol dehydrogenase gene from G. oxydans for system 2. Both systems efficiently converted D-xylulose into xylitol without the addition of expensive NADH. Approximately 26.91 g/L xylitol was obtained from around 30 g/L D-xylulose within system 1 (E. coli Rosetta/Duet-xdh-gdh), with a 92% conversion yield, somewhat higher than that of system 2 (E. coli Rosetta/Duet-xdh-adh, 24.9 g/L, 85.2%). The xylitol yields for both systems were more than 3-fold higher compared to that of the G. oxydans NH-10 cells (7.32 g/L). The total turnover number (TTN), defined as the number of moles of xylitol formed per mole of NAD(+), was 32,100 for system 1 and 17,600 for system 2. Compared with that of G. oxydans NH-10, the TTN increased by 21-fold for system 1 and 11-fold for system 2, hence, the co-expression systems greatly enhanced the NADH supply for the conversion, benefiting the practical synthesis of xylitol.  相似文献   

5.
Anaerobic D-xylose fermentations were performed with C. shehatate in the presence of 0, 25, and 50 g/L of xylitol. D-Xylose was preferentially utilized over xylitol and ethanol yields (Y Etoh/S 0.26 g/g) were unaffected by xylitol. Added xylitol did inhibit conversion of xylose to xylitol at an external xylitol concentration of 50 g/L; Y Xylitol/S was reduced from 0.21 to 0.14. Cell viability declined in all of the fermentations, but was not due to the presence of xylitol. The decline in viability was attributed to oxygen deprivation, since ethanol levels only reached 10.5 g/L and the decline cell viability was the same in each fermentation, regardless of the xylitol concentration.  相似文献   

6.
Summary The production of extracellular xylitol from D-xylose by an efficient xylitol-producing yeast, Candida sp. L-102, was studied in shake flask cultures with different nitrogen sources in the basic salt medium. Maximum xylitol production was obtained with urea as the nitrogen source. A final concentration of 100 g/L of xylitol from 114 g/L D-xylose was obtained from the yeast with an indicated yield of 87.7% (based on D-xylose consumed). The average specific xylitol production rate of 0.46 g/g.h was achieved within 65 hours of incubation using 0.3% urea.  相似文献   

7.
About 270 yeast isolates were screened for xylitol production using xylose as the sole carbon source. The best isolate, Debaryomyces hansenii UFV-170, released 5.84 g L(-1) xylitol from 10 g L(-1) xylose after 24 h, corresponding to a yield of xylitol on consumed substrate (Y(P/S)) of 0.54 g g(-1). This strain was cultivated batch-wise at variable starting concentrations of xylose (S(o)) and biomass (X(o)) and agitation intensity, in order to improve xylitol production and to evaluate, through simple carbon balances, the influence of these conditions on xylose metabolism. Under the best microaerobic conditions (S(o) = 53 g L(-1), X(o) = 1.4 g L(-1), 200 rpm), xylitol production reached 37.0 g L(-1), corresponding to xylitol volumetric productivity of 1.0 g L(-1)h(-1), specific productivity of 0.22 g g(-1)h(-1) and Y(P/S) = 0.76 g g(-1). Almost 83% of xylose was consumed for xylitol production, the rest being consumed for growth, while respiration was negligible. The new isolate appeared to be a promising alternative for industrial xylitol bioproduction.  相似文献   

8.
The co-production of xylitol and ethanol from agricultural straw has more economic advantages than the production of ethanol only. Saccharomyces cerevisiae, the most widely used ethanol-producing yeast, can be genetically engineered to ferment xylose to xylitol. In the present study, the effects of xylose-specificity, cofactor preference, and the gene copy number of xylose reductase (XR; encoding by XYL1 gene) on xylitol production of S. cerevisiae were investigated. The results showed that overexpression of XYL1 gene with a lower xylose-specificity and a higher NADPH preference favored the xylitol production. The copy number of XYL1 had a positive correlation with the XR activity but did not show a good correlation with the xylitol productivity. The overexpression of XYL1 from Candida tropicalis (CtXYL1) achieved a xylitol productivity of 0.83 g/L/h and a yield of 0.99 g/g-consumed xylose during batch fermentation with 43.5 g/L xylose and 17.0 g/L glucose. During simultaneous saccharification and fermentation (SSF) of pretreated corn stover, the strain overexpressing CtXYL1 produced 45.41 g/L xylitol and 50.19 g/L ethanol, suggesting its application potential for xylitol and ethanol co-production from straw feedstocks.  相似文献   

9.
The production of xylitol from concentrated synthetic xylose solutions (S(o) = 130-135 g/L) by Debaryomyces hansenii was investigated at different pH and temperature values. At optimum starting pH (pH(o) = 5.5), T = 24 degrees C, and relatively low starting biomass levels (0.5-0.6 g(x)/L), 88% of xylose was utilized for xylitol production, the rest being preferentially fermented to ethanol (10%). Under these conditions, nearly 70% of initial carbon was recovered as xylitol, corresponding to final xylitol concentration of 91.9 g(P)/L, product yield on substrate of 0.81 g(P)/g(S), and maximum volumetric and specific productivities of 1.86 g(P)/L x h and 1.43 g(P)/g(x) x h, respectively. At higher and lower pH(o) values, respiration also became important, consuming up to 32% of xylose, while negligible amounts were utilized for cell growth (0.8-1.8%). The same approach extended to the effect of temperature on the metabolism of this yeast at pH(o) = 5.5 and higher biomass levels (1.4-3.0 g(x)/L) revealed that, at temperatures ranging from 32-37 degrees C, xylose was nearly completely consumed to produce xylitol, reaching a maximum volumetric productivity of 4.67 g(P)/L x h at 35 degrees C. Similarly, both respiration and ethanol fermentation became significant either at higher or at lower temperatures. Finally, to elucidate the kinetic mechanisms of both xylitol production and thermal inactivation of the system, the related thermodynamic parameters were estimated from the experimental data with the Arrhenius model: activation enthalpy and entropy were 57.7 kJ/mol and -0.152 kJ/mol x K for xylitol production and 187.3 kJ/mol and 0.054 kJ/mol x K for thermal inactivation, respectively.  相似文献   

10.
Cells of Candida guilliermondii immobilized onto porous glass spheres were cultured batchwise in a fluidized bed bioreactor for xylitol production from sugarcane bagasse hemicellulose hydrolyzate. An aeration rate of only 25 mL/min ensured minimum yields of xylose consumption (0.60) and biomass production (0.14 g(DM)/g(Xyl)), as well as maximum xylitol yield (0.54 g(Xyt)/g(Xyl)) and ratio of immobilized to total cells (0.83). These results suggest that cell metabolism, although slow because of oxygen limitation, was mainly addressed to xylitol production. A progressive increase in the aeration rate up to 140 mL/min accelerated both xylose consumption (from 0.36 to 0.78 g(Xyl)/L.h) and xylitol formation (from 0.19 to 0.28 g(Xyt)/L.h) but caused the fraction of immobilized to total cells and the xylitol yield to decrease up to 0.22 and 0.36 g(Xyt)/g(Xyl), respectively. The highest xylitol concentration (17.0 g(Xyt)/L) was obtained at 70 mL/min, but the specific xylitol productivity and the xylitol yield were 43% and 22% lower than the corresponding values obtained at the lowest air flowrate, respectively. The concentrations of consumed substrates and formed products were used in material balances to evaluate the xylose fractions consumed by C. guilliermondii for xylitol production, complete oxidation through the hexose monophosphate shunt, and cell growth. The experimental data collected at variable oxygen level allowed estimating a P/O ratio of 1.35 mol(ATP)/mol(O) and overall ATP requirements for biomass growth and maintenance of 3.4 mol(ATP)/C-mol(DM).  相似文献   

11.
从氧化葡萄糖酸杆菌(Gluconobacter oxydans)的基因组DNA上扩增出木糖醇脱氢酶基因xdh,构建了诱导型表达载体pSE-xdh,导入E.coli JM109后获得了高效表达木糖醇脱氢酶基因的重组菌JM109/pSE-xdh。通过HisTrap HP亲和层析和SephacrylS 300分子筛两步纯化从细胞中得到纯酶,并对酶学性质进行研究。XDH最适还原反应的pH值为5.0,最适还原反应的温度为35℃;最适氧化反应的pH值为11.0,最适氧化反应的温度为30℃。重组菌中的XDH依赖NADH,对NADH的米氏常数Km=57.8 mmol/L,最大反应速率Vmax=1209.1 mmol/(ml·min)。重组菌的XDH酶活力为13.9 U/mg。利用重组菌和原始菌混合静止细胞转化D 木酮糖,16 h 28.0 g/L D木酮糖生成16.7 g/L木糖醇,而原始菌单独转化只生成8.3 g/L木糖醇。  相似文献   

12.
Biosynthesis of xylitol using the yeast Debaryomyces hansenii NRRL Y-7426 was carried out using distilled grape marc (DGM) hemicellulosic hydrolysates directly concentrated by vacuum evaporation or after detoxification with activated charcoal. The effect of nutrient supplementation with vinasses, corn steep liquor (CSL) or commercial nutrients was explored. Using crude concentrated hemicellulosic hydrolysates, the maximum xylitol concentration, 11.3?g/L, was achieved after 172?hr (Q ( xylitol )?=?0.066?g/L-hr; Y ( xylitol ) (/SC)?=?0.21?g/g); meanwhile, using detoxified concentrated hydrolysates, the concentration increased up to 19.7?g/L after 72?hr (Q ( xylitol )?=?0.274?g/L-hr; Y ( xylitol ) (/SC)?=?0.38?g/g). On the other hand, using crude or detoxified hydrolysates, the xylose-to-xylitol bioconversion was strongly affected by the addition of nutrients, suggesting that these hydrolysates present essential nutrients favouring the growth of D. hansenii.  相似文献   

13.
Xylitol production from xylose by two yeast strains: Sugar tolerance   总被引:8,自引:0,他引:8  
The kinetics and enzymology ofd-xylose utilization are studied in micro-, semi-, and aerobic batch cultures during growth ofCandida guilliermondii andCandida parapsilosis in the presence of several initial xylose concentrations. The abilities of xylitol accumulation by these two yeast strains are high and similar, although observed under various growth conditions. WithCandida parapsilosis, optimal xylitol production yield (0.74 g/g) was obtained in microaerobiosis with 100 g/L of xylose, whereas optimal conditions to produce xylitol byCandida guilliermondii (0.69 g/g) arose from aerobiosis with 300 g/L of sugar. The different behavior of these yeasts is most probably explained by differences in the nature of the initial step of xylose metabolism: a NADPH-linked xylose reductase activity is measured with a weaker NADH-linked activity. These activities seem to be dependent on the degree of aerobiosis and on the initial xylose concentration and correlate with xylitol accumulation.  相似文献   

14.
The operational conditions for xylitol production by fermentation of sugarcane bagasse hydrolysate in a fluidized bed reactor with cells immobilized on zeolite were evaluated. Fermentations were carried out under different conditions of air flowrate (0.0125-0.0375 vvm), zeolite mass (100-200 g), initial pH (4-6), and xylose concentration (40-60 g/L), according to a 2(4) full factorial design. The air flowrate increase resulted in a metabolic deviation from product to biomass formation. On the other hand, the pH increase favored both the xylitol yield (Y(P/S)) and volumetric productivity (Q(P)), and the xylose concentration increase positively influenced the xylitol concentration. The best operational conditions evaluated were based on the use of an air flowrate of 0.0125 vvm, 100 g of zeolite, pH 6, and xylose concentration of 60 g/L. Under these conditions, 38.5 g/L of xylitol were obtained, with a Y(P/S) of 0.72 g/g, Q(P) of 0.32 g/L.h, and cell retention of 25.9%.  相似文献   

15.
The effect of oxygenation on xylitol production by the yeast Debaryomyces hansenii has been investigated in this work using the liquors from corncob hydrolysis as the fermentation medium. The concentrations of consumed substrates (glucose, xylose, arabinose, acetate and oxygen) and formed products (xylitol, arabitol, ethanol, biomass and carbon dioxide) have been used, together with those previously obtained varying the hydrolysis technique, the level of adaptation of the microorganism, the sterilization procedure and the initial substrate and biomass concentrations, in carbon material balances to evaluate the percentages of xylose consumed by the yeast for the reduction to xylitol, alcohol fermentation, respiration and cell growth. The highest xylitol concentration (71 g/L) and volumetric productivity (1.5 g/L.h) were obtained semiaerobically using detoxified hydrolyzate produced by autohydrolysis-posthydrolysis, at starting levels of xylose (S(0)) and biomass (X(0)) of about 100 g/L and 12 g(DM)/L, respectively. No less than 80% xylose was addressed to xylitol production under these conditions. The experimental data collected in this work at variable oxygen levels allowed estimating a P/O ratio of 1.16 mol(ATP)/mol(O). The overall ATP requirements for biomass production and maintenance demonstrated to remarkably increase with X(0) and for S(0) >or= 130 g/L and to reach minimum values (1.9-2.1 mol(ATP)/C-mol(DM)) just under semiaerobic conditions favoring xylitol accumulation.  相似文献   

16.
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.  相似文献   

17.
酵母发酵蔗渣半纤维素水解物生产木糖酶   总被引:5,自引:0,他引:5  
采用二次正交旋转组合设计研究了蔗渣半纤维素水解过程中硫酸浓度与液 固比对木糖收率的影响。回归分析表明 ,这两个因素与木糖的收率之间存在显著的回归关系。通过回归方程优化水解条件 ,当硫酸浓度 2 .4g L ,液 固 =6 .2 ,在蒸汽压力 2 .5× 10 4Pa的条件下水解 2 .5h ,10 0g蔗渣可水解生成木糖约 2 4g。大孔树脂吸附层析处理蔗渣半纤维素水解物 ,能有效地减少其中的酵母生长抑制物含量 ,显著改善水解物的发酵性能。用大孔树脂在pH 2条件下处理过的蔗渣半纤维素水解物作基质 ,含木糖 2 0 0g L ,产木糖醇酵母菌株CandidatropicalisAS2 .1776发酵 110h耗完基质中的木糖 ,生成木糖醇 12 7g L ,产物转化率 0 .6 4(木糖醇g 木糖g) ,产物生成速率 1.15g L·h .  相似文献   

18.
Brewer's spent grain, the main byproduct of breweries, was hydrolyzed with dilute sulfuric acid to produce a hemicellulosic hydrolysate (containing xylose as the main sugar). The obtained hydrolysate was used as cultivation medium by Candidaguilliermondii yeast in the raw form (containing 20 g/L xylose) and after concentration (85 g/L xylose), and the kinetic behavior of the yeast during xylitol production was evaluated in both media. Assays in semisynthetic media were also performed to compare the yeast performance in media without toxic compounds. According to the results, the kinetic behavior of the yeast cultivated in raw hydrolysate was as effective as in semisynthetic medium containing 20 g/L xylose. However, in concentrated hydrolysate medium, the xylitol production efficiency was 30.6% and 42.6% lower than in raw hydrolysate and semisynthetic medium containing 85 g/L xylose, respectively. In other words, the xylose-to-xylitol bioconversion from hydrolysate medium was strongly affected when the initial xylose concentration was increased; however, similar behavior did not occur from semisynthetic media. The lowest efficiency of xylitol production from concentrated hydrolysate can be attributed to the high concentration of toxic compounds present in this medium, resulting from the hydrolysate concentration process.  相似文献   

19.
Candida guilliermondii cells, immobilized in Ca-alginate beads, were used for batch xylitol production from concentrated sugarcane bagasse hydrolyzate. Maximum xylitol concentration (20.6 g/L), volumetric productivity (0.43 g/L. h), and yield (0.47 g/g) obtained after 48 h of fermentation were higher than similar immobilized-cell systems but lower than free-cell cultivation systems. Substrates, products, and biomass concentrations were used in material balances to study the ways in which the different carbon sources were utilized by the yeast cells under microaerobic conditions. The fraction of xylose consumed to produce xylitol reached a maximum value (0.70) after glucose and oxygen depletion while alternative metabolic routes were favored by sub-optimal conditions.  相似文献   

20.
The effect of culture conditions on xylitol production rate was investigated using Candida tropicalis IFO 0618. From the variance analysis of xylitol production rate, it was found that initial yeast extract concentration was highly significant (99%), while the interaction between D-xylose concentration and aeration rate was significant (95%). These results show the importance of initial yeast extract concentration and of the balance between D-xylose concentration and aeration in the production of xylitol. It was also clearly shown that C. tropicalis needed more yeast extract concentration for efficient xylitol production than for its growth. In order to enhance xylitol production rate, culture conditions were optimized by the Box-Wilson method. In this respect, initial D-xylose concentration, yeast extract concentration, and K(L)a were chosen as the independent factors in 2(3)-factorial experimental design. As the result of experiments, a maximum xylitol production rate of 2.67 g/L . h was obtained when initial D-xylose concentration and yeast extract concentration were 172.0 and 21.0 g/L, respectively, and K(L)a was 451.50 h(-1) by 90% oxygen gas. (c) 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号