首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Various intracellular or intercellular stimuli have been associated with the development of cardiac cell hypertrophy. However, the mechanisms underlying this association are not completely understood. In a previous study we determined that ZAK mRNA expression is abundant in heart. ZAK is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the stress-activated protein kinase/c-jun N-terminal kinase pathway and activates NF-kappaB. We, therefore, investigated the potential involvement of ZAK (which in cultured H9c2 cardiomyoblast cell is a positive mediator of cell hypertrophy). Our results showed that the expression of a wild-type form of ZAK induces the characteristic hypertrophic growth features, including increased cell size, elevated atrial natriuretic factor expression, and increased actin fiber organization.  相似文献   

3.
The aim of this study was to combine matrix metalloproteinase-9 (MMP-9) protein (enzyme-linked immunosorbent assay [ELISA]) and MMP-9 activity (fluorescence resonance energy transfer [FRET] assay) data to generate units of specific activity in endogenous and p-aminophenylmercuric acetate (APMA)-activated lithium heparin plasma. The results indicate that specific activity is constant in APMA-activated plasma (mean value = 1359.4 pmol/min/μg) and approximately 12% plasma MMP-9 is endogenously active. Exogenous tissue inhibitor of metalloproteinase-1 (TIMP-1) has a greater inhibitory effect on endogenously active MMP-9 than on APMA-activated MMP-9. In conclusion, specific activity can be used as a tool to monitor MMP-9 inhibition. APMA activation affects natural enzyme inhibition, possibly by chemical modification of the C-terminal portion of the enzyme containing the TIMP-1 binding site.  相似文献   

4.
5.
6.
Members of both the Wnt and bone morphogenetic protein (BMP) families of signaling molecules have been implicated in the regulation of cartilage development. We explored the underlying mechanism of BMP-2-induced chondrocyte commitment of C3H10T1/2 cells. Treating cells with exogenous BMP-2 was tied to chondrocyte commitment by inhibiting matrix metalloproteinase-9 activity (MMP-9: 92 kDa type IV collagenase/gelatinase B). Glycogen synthase kinase (GSK)-3β inhibition by its specific inhibitor blocked BMP-2-induced chondrocyte commitment by stimulating MMP-9 activity. These findings indicate that the downregulation of MMP-9 by BMP-2 is associated with chondrocyte commitment, and that the GSK-3β signaling pathway is involved in this process.  相似文献   

7.
8.
9.
The goal of our study was to analyse the prognostic values for some matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) in breast cancer. We evaluated the activity and the expression levels of MMP-9, MMP-2, TIMP-1 and TIMP-2 in malignant versus benign fresh breast tumor extracts. For this purpose, gelatinzymography, immunoblotting and ELISA were used to analyse the activity and expression of MMPs and TIMPs. We found that MMP-9 expression level and activity are increased in malignant tumors. In addition, MMP-9/TIMP-1 and MMP-2/TIMP-2 ratio values obtained by us were significantly different in malignant tumors compared to benign tumors. We suggest that the abnormal MMP-9/TIMP-1 balance plays a role in the configuration of breast invasive carcinoma of no special type and also in tumor growth, while altered MMP-2/TIMP-2 ratio value could be associated with lymph node invasion and used as a prognostic marker in correlation with Nottingham Prognostic Index. Finally, we showed that in malignant tumors high expression of estrogen receptors is associated with enhanced activity of MMP-2 and increased bcl- 2 levels, while high expression of progesterone receptors is correlated with low TIMP-1 protein levels.  相似文献   

10.
Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway   总被引:6,自引:0,他引:6  
Homocysteine (Hcy) induces matrix metalloproteinase (MMP)-9 in microvascular endothelial cells (MVECs). We hypothesized that the ERK1/2 signaling pathway is involved in Hcy-mediated MMP-9 expression. In cultured MVECs, Hcy induced activation of ERK, which was blocked by PD-98059 and U0126 (MEK inhibitors). Pretreatment with BAPTA-AM, staurosporine (PKC inhibitor), or Gö6976 (specific inhibitor for Ca2+-dependent PKC) abrogated ERK phosphorylation, suggesting the role of Ca2+ and Ca2+-dependent PKC in Hcy-induced ERK activation. ERK phosphorylation was suppressed by pertussis toxin (PTX), suggesting the involvement of G protein-coupled receptors (GPCRs) in initiating signal transduction by Hcy and leading to ERK activation. Pretreatment of MVECs with genistein, BAPTA-AM, or thapsigargin abrogated Hcy-induced ERK activation, suggesting the involvement of the PTK pathway in Hcy-induced ERK activation, which was mediated by intracellular Ca2+ pool depletion. ERK activation was attenuated by preincubation with N-acetylcysteine (NAC) and SOD, suggesting the role of oxidation in Hcy-induced ERK activation. Pretreatment with an ERK1/2 blocker (PD-98059), staurosporine, folate, or NAC modulated Hcy-induced MMP-9 activation as measured using zymography. Our results provide evidence that Hcy triggers the PTX-sensitive ERK1/2 signaling pathway, which is involved in the regulation of MMP-9 in MVECs. calcium signaling; protein kinase C; Src; G protein-coupled receptor; nonreceptor tyrosine kinase; protein Gi; protein Gq; protein tyrosine kinase 2; microvascular endothelial cell; cardiovascular remodeling  相似文献   

11.
Dysregulated expression of matrix metalloproteinases (MMPs) is closely associated with the pathogenesis of renal ischemia/reperfusion injury (I/R). The production of excessive reactive oxygen species (ROS) causes tissue damage. Increased ROS production causes activation of p38 mitogen-activated protein kinase (MAPK) signaling, which participates in gene regulation of MMPs, especially MMP-2 and MMP-9 (gelatinases). Taurine (2-aminoethanesulfonic acid) in mammalian cells functions in bile acid conjugation, maintenance of calcium homeostasis, osmoregulation, membrane stabilization, and antioxidation, antiinflammatory, and antiapoptotic action. We investigated the effects of taurine and the possible role of p38 MAPK signaling on regulation of MMP-2 and MMP-9 in a renal I/R injury model in rats. Rats were divided into three groups: sham, I/R, and I/R + taurine treated. After a right nephrectomy, I/R was induced by clamping the left renal pedicle for 1 h followed by 6 h reperfusion. Taurine was administered 45 min prior to induction of ischemia. Renal function was assessed by serum creatinine and blood urea nitrogen (BUN) levels. Tubule injury and structural changes were evaluated by light microscopy. Malondialdehyde (MDA) levels were analyzed by high performance liquid chromatography (HPLC). Superoxide dismutase (SOD) activity levels were measured using a colorimetric kit. mRNA expression of MMP-2 and MMP-9 was determined by real-time polymerase chain reaction. MMP-2 and MMP-9 activities were measured using a fluorimetric kit. Phosphorylated p38 (p-p38) and total p38 MAPK protein expressions were evaluated by western blot. Taurine pretreatment significantly attenuated renal dysfunction and histologic damage, such as renal tubule dilation and loss of brush borders. The pretreatment also decreased the MDA level and attenuated the reduction of SOD activity in the kidney during I/R. Taurine pretreatment also decreased significantly both MMP-2 and MMP-9 mRNA expression and MMP-9 activity induced by I/R. In addition, the activity of p38 MAPK signaling was down-regulated significantly by taurine administration. Inhibition of MMP-2 and MMP-9 expression and MMP-9 activity caused by taurine may be associated with suppression of p38 MAPK activation during I/R induced renal injury in rats. Therefore, taurine administration may prove to be a strategy for attenuating renal I/R injury.  相似文献   

12.
13.
The leucine-zipper (LZ) and sterile-alpha motif (SAM) kinase (ZAK) belongs to the MAP kinase kinase kinase (MAP3K) when upon over-expression in mammalian cells activates the JNK/SAPK pathway. The mechanisms by which ZAK activity is regulated are not well understood. Co-expression of dominant-negative MKK7 but not MKK4 and ZAK significantly attenuates JNK/SAPK activation. This result suggests that ZAK activates JNK/SAPK mediated by downstream target, MKK7. Expression of ZAK but not kinase-dead ZAK in 10T1/2 cells results in the disruption of actin stress fibers and morphological changes. Therefore, ZAK activity may be involved in actin organization regulation. Expression of wild-type ZAK increases the cell population in the G(2)/M phase of the cell cycle, which may indicate G(2) arrest. Western blot analysis shows that the decreased cyclin E level correlated strongly with the low proliferative capacity of ZAK-expressed cells.  相似文献   

14.
Matrix metalloproteinases (MMPs), a family of endoproteinases, are implicated in cardiac remodeling. Interleukin-1beta (IL-1beta), which is increased in the heart following myocardial infarction, increases expression and activity of MMP-2 (gelatinase A) and -9 (gelatinase B) in cardiac fibroblasts. Previously, we have shown that IL-1beta activates ERK1/2, JNKs, and protein kinase C (PKC). However, signaling pathways involved in the regulation of MMP-2 and -9 expression and activity are not yet well understood. Using adult rat cardiac fibroblasts, we show that inhibition of ERK1/2 and JNKs inhibits IL-1beta-stimulated increases in MMP-9, not MMP-2, expression and activity. Chelerythrine, an inhibitor of PKC, inhibited activation of ERK1/2 and JNKs and expression and activity of both MMPs. Selective inhibition of PKC-alpha/beta1 using G?6976 inhibited JNKs activation and the expression and activity of MMP-9, not MMP-2. Inhibition of PKC-theta and PKC-zeta using pseudosubstrates inhibited IL-1beta-stimulated activation of ERK1/2 and JNKs and the expression and activity of MMP-2 and -9. Inhibition of PKC-epsilon had no effect. IL-1beta activated NF-kappaB pathway as measured by increased phosphorylation of IKKalpha/beta and IkappaB-alpha. Inhibition of ERK1/2, JNKs, and PKC-alpha/beta1 had no effect on NF-kappaB activation, whereas inhibition of PKC-theta and PKC-zeta inhibited IL-1beta-stimulated activation of NF-kappaB. SN50, NF-kappaB inhibitor peptide, inhibited IL-1beta-stimulated increases in MMP-2 and -9 expression and activity. These observations suggest that 1) activation of ERK1/2 and JNKs plays a critical role in the regulation of MMP-9, not MMP-2, expression and activity; 2) PKC-alpha/beta1 act upstream of JNKs, not ERK1/2; 3) PKC-zeta and -theta, not PKC-epsilon, act upstream of JNKs, ERK1/2, and NF-kappaB; and 4) activation of NF-kappaB stimulates expression and activity of MMP-2 and -9.  相似文献   

15.
Salvianolic acid B (Sal B), a water-soluble antioxidant derived from a Chinese medicinal herb, is believed to have multiple therapeutic and preventive against human vascular diseases, including atherosclerosis and restenosis. To elucidate the underlying cellular mechanisms, we produced hypercholesterolemia by feeding apo-E-deficient mice a 0.15% cholesterol diet and inflammation in human aortic smooth muscle cells (HASMCs) with the endotoxin lipopolysaccharide (LPS), focusing on the metallopreteinases MMP-2 and MMP-9, the relevant signal transduction pathways and the effects of Sal B. Immunohistochemical analyses indicated apo-E-deficient mice fed a 0.15% cholesterol diet for 12 weeks exhibited thickened intima and elevated levels of MMP-2 and MMP-9 in aortic sections, both of which were attenuated by 0.3% Sal B dietary supplement. Western blotting and zymography analyses indicated that unstimulated HASMCs exhibited basal levels of protein and activity levels for MMP-2 and barely detectable levels for MMP-9, both of which were markedly upregulated by LPS, which also induced cell migration. Sal B significantly attenuated upregulations of both MMPs as well as the LPS-induced cell migration through the inactivation of MMP-2 and MMP-9 protein synthesis as well as the downregulation of the extracellular-signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). These results demonstrate that Sal B has anti-migration properties on smooth muscle cells and may explain its anti-atherosclerotic properties. This novel mechanism of action of Sal B, in addition to its previously reported inhibition of LDL oxidation, may help explain its efficacy in the treatment of atherosclerosis.  相似文献   

16.
Abstract

All-trans-retinoic acid (ATRA) can regulate some specific genes expression in various tissue and cells via nuclear retinoic acid receptors (RARs), including three subtypes: retinoic acid receptor-alpha (RAR-α), retinoic acid receptor-beta (RAR-β) and retinoic acid receptor-gamma (RAR-γ). Podocyte injury plays a pivotal role in the progression of glomerulosclerosis (GS). This study was performed to study the potential signal pathway of ATRA in the expression of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) in injury podocyte. Cells were divided into three groups: group of negative control (NC), group of injury podocyte induced by adriamycin (ADR) (AI) and group of ADR inducing podocyte injury model treated with ATRA (AA). The cells morphology changes were detected using microscope and scanning electron microscopy. MMP-2 and MMP-9 enzymic activity was detected using the gelatin zymography method. Protein and mRNA expressions of MMP-2, MMP-9, RAR-α, RAR-β and RAR-γ were measured by western-blot and real-time RT-PCR. Enzymatic activity of MMP-2 and MMP-9 in group AA was significantly enhanced compared to AI group after ATRA-treated 24?h (p?<?0.05). The protein and mRNA expressions of MMP-2/MMP-9 in group AA were significantly increased than those in group AI at both 12 and 24?h time points (p?<?0.05). Compared to group AI, RAR-α and RAR-γ protein/mRNA expressions of group AA were significantly increased at both 12 and 24?h time points (p?<?0.05). There was no difference for the expression of RAR-β between group AI and group AA (p?>?0.05). RAR-α protein level was positively correlated with MMP-2 or MMP-9 protein expression (p?<?0.05), and RAR-γ protein level was also positively correlated with MMP-2 or MMP-9 protein expression (p?<?0.05). In conclusion, ATRA may increase expression of MMP-2 and MMP-9 by the potential signal pathway of RAR-α and RAR-γ in injury podocyte induced by adriamycin, but not RAR-β.  相似文献   

17.
Calreticulin is an endoplasmic reticulum protein important in cardiovascular development. Deletion of the calreticulin gene leads to defects in the heart and the formation of omphaloceal. These defects could both be due to changes in the extracellular matrix composition. Matrix metalloproteinases (MMP)-2 and MMP-9 are two of the MMPs which are essential for cardiovascular remodelling and development. Here, we tested the hypothesis that the defects observed in the heart and body wall of the calreticulin null embryos are due to alterations in MMP-2 and MMP-9 activity. Our results demonstrate that there is a significant decrease in the MMP-9 and increase in the MMP-2 activity and expression in the calreticulin deficient cells. We also showed that there is a significant increase in the expression level of membrane type-1 matrix metalloproteinase (MT1-MMP). In contrast, there was no change in the tissue inhibitor of matrix metalloproteinase (TIMP)-1 or -2 in the calreticulin deficient cells as compared to the wild type cells. Interestingly, the inhibition of the MEK kinase pathway using PD98059 attenuated the decrease in the MMP-9 mRNA with no effect on the MMP-2 mRNA level in the calreticulin deficient cells. Furthermore, PI3 kinase inhibitor decreased the expression of both the MMP-2 and MMP-9. This study is the first report on the role of calreticulin in regulating MMP activity.  相似文献   

18.
We evaluated the presence of estrogen (ER) and progesterone (PR) receptors, and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) enzymes in 18 feline mammary tubulopapillary carcinomas. Immunohistochemistry was performed to localize ER, PR, MMP-2 and MMP-9 in situ. Western blotting and zymographic analyses also were performed to investigate the presence and activities of MMP-2 and MMP-9 enzymes in fresh tissue homogenates. ER immune expression was detected in five samples (27.7%) and PR was positive in sixteen (88.8%) samples. Diffuse cytoplasmic staining of MMP-2 and MMP-9 in neoplastic mammary epithelial cells, stromal fibroblasts and inflammatory cell was evident. MMP-2 and MMP-9 staining was observed also in metastasizing neoplastic cells within lymphatic vessels. MMP-2 and MMP-9 enzymes and their activities in fresh tumor homogenates were demonstrated by zymography. Comparison of MMP-9 gelatinolytic bands from tumor samples and controls revealed a statistically significant difference. We demonstrated elevated MMP-9 and MMP-2 levels in tumor samples by Western blotting; analysis of protein bands revealed 1.9-to-3 fold increase in MMP-9 in tumor samples and the difference was statistically significant. Our results suggest that the expression of MMP-9 can be an important indicator for tumor progression and the possible metastatic nature of feline tubulopapillary carcinomas.  相似文献   

19.
We evaluated the presence of estrogen (ER) and progesterone (PR) receptors, and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) enzymes in 18 feline mammary tubulopapillary carcinomas. Immunohistochemistry was performed to localize ER, PR, MMP-2 and MMP-9 in situ. Western blotting and zymographic analyses also were performed to investigate the presence and activities of MMP-2 and MMP-9 enzymes in fresh tissue homogenates. ER immune expression was detected in five samples (27.7%) and PR was positive in sixteen (88.8%) samples. Diffuse cytoplasmic staining of MMP-2 and MMP-9 in neoplastic mammary epithelial cells, stromal fibroblasts and inflammatory cell was evident. MMP-2 and MMP-9 staining was observed also in metastasizing neoplastic cells within lymphatic vessels. MMP-2 and MMP-9 enzymes and their activities in fresh tumor homogenates were demonstrated by zymography. Comparison of MMP-9 gelatinolytic bands from tumor samples and controls revealed a statistically significant difference. We demonstrated elevated MMP-9 and MMP-2 levels in tumor samples by Western blotting; analysis of protein bands revealed 1.9-to-3 fold increase in MMP-9 in tumor samples and the difference was statistically significant. Our results suggest that the expression of MMP-9 can be an important indicator for tumor progression and the possible metastatic nature of feline tubulopapillary carcinomas.  相似文献   

20.
Human cytomegalovirus (HCMV) has been suggested to contribute to the development of vascular diseases. Since matrix metalloproteinases (MMPs) have been implicated in atherosclerosis and plaque rupture, we investigated the effect of HCMV infection on MMP expression in human macrophages. We used quantitative real-time PCR, Western blotting, and gelatin zymography to study the expression and activity of MMP-2, -3, -7, -9, -12, -13, and -14 and of tissue inhibitor of metalloproteinase 1 (TIMP-1), -2, -3, and -4. HCMV infection reduced MMP-9 mRNA, protein, and activity levels but increased TIMP-1 mRNA and protein levels. Furthermore, a decrease in MMP-12, MMP-14, TIMP-2, and TIMP-3 mRNA levels could be detected. The MMP-9 and TIMP-1 mRNA alterations required viral replication. MMP-9 mRNA expression was affected by an immediate-early or early viral gene product, whereas TIMP-1 mRNA expression was affected by late viral gene products. We conclude that HCMV infection specifically alters the MMP-9/TIMP-1 balance in human macrophages, which in turn reduces MMP-9 activity in infected cells. Since MMP-9 prevents atherosclerotic plaque development in mice, these results suggest that HCMV may contribute to atherogenesis through specific effects on MMP-9 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号