首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody-based targeting of the tumor vasculature   总被引:4,自引:0,他引:4  
Conventional cytotoxic therapies of cancer often suffer from a lack of specificity, leading to a poor therapeutic index and considerable toxicities to normal organs. An elegant way to overcome the disadvantages of conventional tumor therapy is the selective delivery of therapeutics to the tumor site by their conjugation to a carrier molecule specific for a tumor-associated molecular marker. Markers expressed on the tumor's vasculature represent particularly attractive targets for a site-specific pharmacodelivery due to their inherent accessibility for blood-borne agents and the various therapeutic options that they allow, ranging from intraluminal blood coagulation to the recruitment of immune cells. In this review, we will outline advances in the preclinical and clinical evaluation of antibody-based vascular targeting agents, describe technologies for the discovery of novel vascular targets and discuss future prospects for vascular targeting applications.  相似文献   

2.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

3.
《MABS-AUSTIN》2013,5(3):247-253
Reducing the blood supply of tumors is one modality to combat cancer. Monoclonal antibodies are now established as a key therapeutic approach for a range of diseases. Owing to the ability of antibodies to selectively target endothelial cells within the tumor vasculature, vascular targeting programs have become a mainstay in oncology drug development. However, the antitumor activity of single agent administration of conventional anti-angiogenic compounds is limited and the improvements in patient survival are most prominent in combinations with chemotherapy. Furthermore, prolonged treatment with conventional anti-angiogenic drugs is associated with toxicity and drug resistance. These circumstances provide a strong rationale for novel approaches to enhance the efficacy of mAbs targeting tumor vasculature such as antibody-drug conjugates (ADCs). Here, we review trends in the development of ADCs targeting tumor vasculature with the aim of informing future research and development of this class of therapeutics.  相似文献   

4.
Effects of various complexes of platinum (II) and platinum (IV) on activities of trypsin, alpha-chymotrypsin, and peroxidase were compared. The platinum (II) complexes were found to inhibit these enzymes, though with variable efficiency. The platinum (IV) complexes at concentrations < or = 0.2 mM efficiently inhibited peroxidase but had no effect on the proteases. An enzymatic assay was developed to measure the most effective peroxidase inhibitor (cisplatin) at concentrations of 5-50 microM in the presence of fivefold excess of its isomer (transplatin).  相似文献   

5.
11 platinum compounds with nitrogen donor ligands, previously tested for anti-tumour activity, were studied for induction of prophage lambda and for mutagenicity in the Ames assay, with various strains of Salmonella. The compounds included cis and trans isomers of Pt(II) and Pt(IV) complexes and were tested with and without metabolic activation. All the cis compounds elicited prophage induction, whereas the trans compounds were inactive. Mutagenicity was found only in strains containing the R factor, indicating that SOS-type repair processes are required for the conversion of initial DNA lesions into mutations. Mutation induction was also influenced by the excision-repair process. The 2 trans compounds were not, or only slightly, mutagenic; all other compounds were mutagenic in at least one strain, exhibiting a 2-20-fold increase over the spontaneous background level. Addition of liver homogenate had no significant effect on the number of mutants. One compound induced exclusively frameshift mutations. The other mutagenic compounds induced frameshift mutations as well as base-pair substitutions. 7 compounds were more mutagenic for the repair-proficient than for the repair-deficient strains; only one showed the opposite effect. This suggests that for mutagenicity testing of platinum compounds, repair-proficient strains are more sensitive indicators. The differences in response of the various strains are more sensitive indicators. The differences in response of the various strains toward the compounds suggest the formation of different DNA lesions and/or a selective action of repair processes on these lesions. In general, a good qualitative correlation was observed between prophage-inducing capacity, mutagenicity in bacterial and mammalian cells and anti-tumour activity.  相似文献   

6.
The synthesis and characterisation of eight new octahedral PtIV complexes of the type trans,trans,trans-[Pt(N3)2(OH)2(NH3)(Am)] where Am = methylamine (2), ethylamine (4), thiazole (6), 2-picoline (8), 3-picoline (10), 4-picoline (12), cyclohexylamine (14), and quinoline (16) are reported, including the X-ray crystal structures of complexes 2, 8, and 14 as well as that of two of the precursor PtII complexes (trans-[Pt(N3)2(NH3)(methylamine)] (1) and trans-[Pt(N3)2(NH3)(cyclohexylamine)] (13)). Irradiation with UVA light rapidly induces loss in intensity of the azide-to-PtIV charge-transfer bands and gives rise to photoreduction of platinum. These complexes have potential for use as photoactivated anticancer agents.  相似文献   

7.
In order to develop new antitumor platinum(IV) complexes with highly tuned lipophilicity, a series of (diamine)Pt(IV) complexes of the formula [Pt(IV)(dach)L(3)L'] or [Pt(IV)(dach)L(2)L"(2)] (dach=trans-(+/-)-1,2-diaminocyclohexane; L=acetato, propionato; L'=acetato, propionato, valerato or pivalato; L"=trifluoroacetato) have been synthesized by electrophilic substitution of the tris(carboxylato)hydroxoplatinum(IV) complexes, [Pt(IV)(dach)L(3)OH] (L=acetato, propionato), with various carboxylic anhydrides such as acetic, trifluoroacetic, pivalic and valeric anhydrides. The present platinum(IV) complexes were fully characterized by means of elemental analyses, 1H NMR, mass and IR spectroscopies. The complexes 8 and 10, satisfying the appropriate range of lipophilicity (logP=0.18-1.54), exhibited high activity (ED(50), 5.1 and 1.3 microM, respectively) compared with other complexes, which implies that the lipophilicity is an important factor for the antitumor activity of this series of complexes.  相似文献   

8.
The cellular distribution of platinum in A2780 ovarian cancer cells treated with cisplatin and platinum(IV) complexes with a range of reduction potentials has been examined using elemental analysis (synchrotron radiation-induced X-ray emission). The cellular distribution of platinum(IV) drugs after 24 h is similar to that of cisplatin, consistent with the majority of administered platinum(IV) drugs being reduced. Micro-X-ray absorption near-edge spectra of cells treated with cisplatin and platinum(IV) complexes confirmed the reduction of platinum(IV) to platinum(II). In cells treated, the most difficult to reduce complex, cis,trans,cis-[PtCl2(OH)2(NH3)2], platinum(IV) was detected in the cells along with platinum(II). The observations are in accordance with the relative ease of reduction of the platinum(IV) complexes used and support the requirement of reduction for activation of platinum(IV) complexes.Abbreviations en ethane-1,2-diamine - GM growth medium - PBS phosphate buffered saline - RPMI Roswell Park Memorial Institute - SRIXE synchrotron radiation-induced X-ray emission - XAFS X-ray absorption fine structure - XANES X-ray absorption near-edge spectroscopy  相似文献   

9.
A novel class of water-soluble Pt(IV) complexes with histamine (Hist) and radioiodinated histamine ([(125)I/(131)I]Hist) has been synthesised with the goal of potential application for concomitant anticancer radio-chemotherapy of solid tumours. The prepared complex of 1:2 metal:ligand stoichiometry ([Pt(IV)(Hist)(2)(OH)(2)]Cl(2)) was characterised by microanalysis, mass spectrometry, and chromatographic methods. Cytotoxic/cytostatic activities of the complex were examined by flow cytometry method using the MCF-7 cells line. A slightly lower cytotoxicity of the Pt(IV) complex comparing to cisplatin was found (IC(50) 59 and 48 microM, respectively). Both cisplatin and the histamine complex show a cytostatic activity by blocking MCF-7 cells in S-phase of cell cycle. Biodistribution studies in normal rats revealed the highest accumulation of the (131)I-labelled complex in liver and kidneys (41.3% and 12.4% ID after 24 h post-intravenous injection (p.i.v.)). The similar pharmacokinetics was observed in tumour-bearing C3H/W mice, however, a lower accumulation in liver was observed following an intraperitoneal comparing to an intravenous administration. A concentration of the complex in tumour increased with time post-intraperitoneal injection (1.2 and 2.5%ID/g after 2 and 24 h (p.i.), respectively). An increasing tumour/muscle ratio was also observed (2.2 and 4.5 after 2 and 24 h p.i., respectively), and that suggests a penetration of the complex into the tumour cells, and a permanent binding with some cellular components, probably with the DNA.  相似文献   

10.
Platinum (IV) complexes [Pt (L)2Cl2] [where, L= benzyl-N-thiohydrazide (L1), (benzyl-N-thio)-1,3-propanediamine (L2), benzaldehyde-benzyl-N-thiohydrazone (L3) and salicylaldehyde-benzyl-N-thiohydrazone (L4)] have been synthesized. The thiohydrazide, thiodiamine and thiohydrazones can exist as thione-thiol tautomer and coordinate as a bidentate N-S ligand. The ligands were found to act in monobasic bidentate fashion. Analytical data reveal that metal to ligand stoichiometry is 1:2. The complexes have been characterized by elemental analysis, IR, mass, electronic and 1H NMR spectroscopic studies. In vitro antibacterial and cytotoxic studies have been carried out for some complexes. Various kinetic and thermodynamic parameters like order of reaction (n), activation energy (Ea), apparent activation entropy (S#) and heat of reaction (DeltaH) have also been carried out for some complexes.  相似文献   

11.
[PtMe3(Me2CO)3]BF4 (1) reacts in acetone with 1,2,3,4-tetraacetyl-beta-D-glucopyranose (C2), pentaacetyl-alpha-D-glucopyranose (C3), pentaacetyl-beta-D-mannopyranose (C4) and pentaacetyl-beta-D-galactopyranose (C5) to give trimethyl(carbohydrate)platinum tetrafluoroborate complexes [PtMe3L]BF4 (2-5) (2, L=C2; 3, L=C3; 4, L=C4; 5, L=C5). The platinum-carbohydrate complexes were isolated as white, air and moisture sensitive powders in moderate to good yields (26-87%), and their identities were confirmed by microanalysis, 1H-, 13C- and 195Pt-NMR spectroscopy and ESI mass spectrometry. The coordination modes of the tridentately bound carbohydrate ligands (2, OH+Oring+Oacetyl; 3, Oring+Oether+Oacetyl; 4,5, Oring+Oether+Oether where Oring is the oxygen of a pyranose ring and Oacetyl/ether is the acetyl and ether oxygen of an acetoxy substituent, respectively) were established by evaluating the chemical shifts and the 2J(Pt,H) coupling constants of the methyl ligands and by 2D-NOE experiments. Evaluation of the 3J(H,H) coupling constants shows that the pyranose rings are present in their 4C1 conformation. The results show that carbohydrates without anchoring groups and even without hydroxyl groups can coordinate to the metal center only through very weak donors such as oxygen atoms of pyranose rings and acetoxy substituents.  相似文献   

12.
13.
(OC-6-33)-Dichlorido(ethane-1,2-diamine)dihydroxidoplatinum(IV) (1) was carboxylated using succinic- or 3-methylglutaric anhydride. The resulting bis(carboxylato)platinum(IV) complexes display free, uncoordinated carboxylic acid groups which were further derivatized with primary aliphatic alcohols. The complexes were characterized in detail by elemental analysis, ESI-MS, FT-IR, as well as multinuclear (1H, 13C, 15N, 195Pt) NMR spectroscopy. Cytotoxic properties were evaluated in four human tumor cell lines originating from ovarian carcinoma (CH1, SK-OV-3), cervical carcinoma (HeLa) and colon carcinoma (SW480) by means of the MTT assay (MTT = 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). Structure-activity relationships showed that the cytotoxicity increased with increasing lipophilicity of the alcoholate moiety yielding IC50 values in the low micromolar or even low nanomolar range.  相似文献   

14.
The reduction potentials, lipophilicities, cellular uptake and cytotoxicity have been examined for two series of platinum(IV) complexes that yield common platinum(II) complexes on reduction: cis-[PtCl(4)(NH(3))(2)], cis,trans,cis-[PtCl(2)(OAc)(2)(NH(3))(2)], cis,trans,cis-[PtCl(2)(OH)(2)(NH(3))(2)], [PtCl(4)(en)], cis,trans-[PtCl(2)(OAc)(2)(en)] and cis,trans-[PtCl(2)(OH)(2)(en)] (en=ethane-1,2-diamine, OAc=acetate). As previously reported, the reduction occurs most readily when the axial ligand is chloride and least readily when it is hydroxide. The en series of complexes are marginally more lipophilic than their ammine analogues. The presence of axial chloride or acetate ligands results in a slighter higher lipophilicity compared with the platinum(II) analogue whereas hydroxide ligands lead to a substantially lower lipophilicity. The cellular uptake is similar for the platinum(II) species and their analogous tetrachloro complexes, but is substantially lower for the acetato and hydroxo complexes, resulting in a correlation with the reduction potential. The activities are also correlated with the reduction potentials with the tetrachloro complexes being the most active of the platinum(IV) series and the hydroxo being the least active. These results are interpreted in terms of reduction, followed by aquation reducing the amount of efflux from the cells resulting in an increase in net uptake.  相似文献   

15.
A series of bi-functional 7-hydroxycoumarin platinum(IV) complexes were synthesized, characterized, and evaluated for antitumor activities. The 7-hydroxycoumarin platinum(IV) complexes display moderate to effective antitumor activities toward the tested cell lines and show much potential in overcoming drug resistance of platinum(II) drugs. In reducing microenvironment, the title compounds could be reduced to platinum(II) complex accompanied with two equivalents of coumarin units. By a unique mechanism, the 7-hydroxycoumarin platinum(IV) complex attacks DNA via the released platinum(II) compound, meanwhile it also inhibits the activities of cyclooxygenase by coumarin fragment. This action mechanism might be of much benefit for reducing tumor-related inflammation in the progress of inhibiting tumor proliferation and overcoming cisplatin resistance. The incorporation of 7-hydroxycoumarin leads to significantly enhanced platinum accumulation in both whole tumor cells and DNA. The HSA interaction investigation reveals that the tested coumarin platinum(IV) compound could effectively combine with HSA via van der Waals force and hydrogen bond.  相似文献   

16.
The preparation of a series of novel Pt(IV) complexes containing the anionic polyfluoroaryl ligands, 2,3,5,6-tetrafluorophenyl (p-HC6F4), 2,3,5,6-tetrafluoro-4-methoxyphenyl (p-MeOC6F4) and pentafluorophenyl (C6F5) are described. The crystal structure of a representative complex, [Pt(p-MeOC6F4)2(O2CEt)2(en)] (en = ethane-1,2-diamine) was determined and confirms the trans arrangement of the carboxylato ligands. Reduction potentials of the series of complexes reveal that replacement of equatorial chloro ligands by polyfluoroaryl ligands makes reduction substantially more difficult. They also confirm previously reported trends in that complexes having axial carboxylato ligands are more readily reduced than those having axial hydroxo ligands. Reduction potentials and in vitro activities showed no obvious correlations. Moderate to high activity was observed for many complexes in the series, including some of those that were very difficult to reduce.  相似文献   

17.
The cytotoxicities of two platinum(IV) complexes of formula [PtX2(eddp)].nH2O (eddp=ethylenediamine-N,N'-di-3-propionate, X=chloro [I] or bromo [II], n=1 or 1.24) are reported. The complexes have been obtained by direct reaction of potassium hexahaloplatinate(IV) with H2eddp.2HCl followed by addition of a base (LiOH). The crystal and molecular structure has confirmed that the complex with bromo ligands, similarly to the complex with chloro ligands previously reported, has trans configuration of the halogens. In both the chloro and bromo complexes there appear to be intramolecular N-H...X interactions which account for a narrowing of the corresponding X-Pt-N angles below 90degrees. The trans isomer (configuration index OC-6-13, two nitrogens and two oxygens of eddp bound in the equatorial plane) is the only one obtained in the reaction of hexahaloplatinate(IV) with the eddp ligand while a similar reaction performed with ethylenediamine-N,N'-diacetate (edda) affords exclusively the symmetrical cis-isomer (configuration index OC-6-33, equatorial nitrogen and axial oxygen atoms of edda). The longer chain of the propionato groups (as compared to the acetato ones) is responsible for such a change in preferred configuration. NMR data have revealed a very large diastereotopic splitting of the propionato methylene protons to the nitrogens (0.88 ppm). The trans disposition of the halogen ligands in the compounds with eddp leads to deactivation of platinum(IV) complexes in comparison to those with edda having cis disposition of the leaving chlorides (human ovarian cancer cell line A2780, IC50 [muM] of 92.6 +/- 12 and 30.3 +/- 7.5 for [I] and [II], respectively).  相似文献   

18.
Two platinum(IV) complexes (OC-6-33)-dichlorido(ethane-1,2-diamine)dihydroxidoplatinum(IV) and (OC-6-33)-diammine(dichlorido)dihydroxidoplatinum(IV) were carboxylated using demethylcantharidin as carboxylation agent. The complexes were characterized by elemental analysis, mass spectrometry, multinuclear (1H, 13C, 15N, and 195Pt) NMR spectroscopy, and, in case of (OC-6-33)-diamminebis(3-carboxy-7exo-oxabicyclo[2.2.1]heptane-2-carboxylato)dichloridoplatinum(IV) via X-ray diffraction. Cytotoxicity of the complexes was studied in seven human cancer cell lines representing five tumor entities, i.e., ovarian carcinoma (CH1, SK-OV-3), cervical carcinoma (HeLa), colon carcinoma (SW480, HCT-116), osteosarcoma (U-2 OS), and hepatocellular carcinoma (Hep G2) by means of the MTT (=3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium hydrobromide) assay.  相似文献   

19.
The platinum(II) drugs cisplatin, carboplatin and oxaliplatin are usefully employed against a range of malignancies, but toxicities and resistance have spurred the search for improved analogs. This has included investigation of the platinum(IV) oxidation state, which provides greater kinetic inertness. It is generally accepted that Pt(IV) complexes must be reduced to Pt(II) for activation. As such, the ability to monitor reduction of Pt(IV) complexes is critical to guiding the design of candidates, and providing mechanistic understanding. Here we report in full that the white line height of X-ray absorption near-edge spectra (XANES) of Pt complexes, normalized to the post-edge minima, can be used to quantitatively determine the proportion of each oxidation state in a mixture. A series of Pt(IV) complexes based on the Pt(II) complexes cisplatin and transplatin were prepared with chlorido, acetato or hydroxido axial ligands, and studies into their reduction potential and cytotoxicity against A2780 human ovarian cancer cells were performed, demonstrating the relationship between reduction potential and cytotoxicity. Analysis of white line height demonstrated a clear and consistent difference between Pt(II) (1.52 ± 0.05) and Pt(IV) (2.43 ± 0.19) complexes. Reduction of Pt(IV) complexes over time in cell growth media and A2780 cells was observed by XANES, and shown to correspond with their reduction potentials and cytotoxicities. We propose that this method is useful for monitoring reduction of metal-based drug candidates in complex biological systems.  相似文献   

20.
In this study, two Pt(II) and three Pt(IV) complexes with the structures of [PtL2Cl2] (1), [PtL2I2] (2), [PtL2Cl2(OH)2] (3), [PtL2Cl2(OCOCH3)2] (4), and [PtL2Cl4] (5) (L = benzimidazole as carrier ligand) were synthesized and evaluated for their in vitro antiproliferative activities against the human MCF-7, HeLa, and HEp-2 cancer cell lines. The influence of compounds 1–5 on the tertiary structure of DNA was determined by their ability to modify the electrophoretic mobility of the form I and II bands of pBR322 plasmid DNA. The inhibition of BamH1 restriction enzyme activity of compounds 1–5 was also determined. In general, it was found that compounds 1–5 were less active than cisplatin and carboplatin against MCF-7 and HeLa cell lines (except for 1, which was found to be more active than carboplatin against the MCF-7 cell line). Compounds 1 and 3 were found to be significantly more active than cisplatin and carboplatin against the HEp-2 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号