首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With few exceptions, marine mammals are not exposed to fresh water; however quantifying the endocrine and renal responses of a marine-adapted mammal to the infusion of fresh water could provide insight on the evolutionary adaptation of kidney function and on the renal capabilities of these mammals. Therefore, renal function and hormonal changes associated with fresh water-induced diuresis were examined in four, fasting northern elephant seal ( Mirounga angustirostris) (NES) pups. A series of plasma samples and 24-h urine voids were collected prior to (control) and after the infusion of water. Water infusion resulted in an osmotic diuresis associated with an increase in glomerular filtration rate (GFR), but not an increase in free water clearance. The increase in excreted urea accounted for 96% of the increase in osmotic excretion. Following infusion of fresh water, plasma osmolality and renin activity decreased, while plasma aldosterone increased. Although primary regulators of aldosterone release (Na(+), K(+) and angiotensin II) were not significantly altered in the appropriate directions to individually stimulate aldosterone secretion, increased aldosterone may have resulted from multiple, non-significant changes acting in concert. Aldosterone release may also be hypersensitive to slight reductions in plasma Na(+), which may be an adaptive mechanism in a species not known to drink seawater. Excreted aldosterone and urea were correlated suggesting aldosterone may regulate urea excretion during hypo-osmotic conditions in NES pups. Urea excretion appears to be a significant mechanism by which NES pups sustain electrolyte resorption during conditions that can negatively affect ionic homeostasis such as prolonged fasting.  相似文献   

2.
Elephant seals fast for prolonged periods without access to water. This is made possible, in part, by reductions in urine production. However, the mechanisms involved in reducing urine production are not understood. In this study, glomerular filtration rate (GFR) was measured in five northern elephant seal pups (Mirounga angustirostris) via the inulin clearance technique. Measurements were made during day 9 and day 18-22 of nursing and the second and eighth week of the postweaning fast. Plasma aldosterone and cortisol concentrations, quantified by radioimmunoassay, were measured in eight other weanlings during the second and eighth week of the fast. Mean GFR was 79.3+/-29.3 ml/min during the early suckling period and 78.2+/-17.1, 89.8+/-52.7, and 80.4+/-12.2 ml/min during the late suckling, early fasting and late fasting periods, respectively. Differences between nursing and fasting were insignificant, possibly because reduced protein oxidation during suckling and rapid recruitment of protein for tissue synthesis obviated the need for postprandial hyperfiltration. Alternatively, maintenance of GFR during fasting may facilitate urea concentration by compensating for reductions in the fractional excretion of urea. It is further hypothesized that aldosterone is primarily responsible for mediating renal water reabsorption in this system.  相似文献   

3.
Pregnancy is associated with profound changes in renal hemodynamics and electrolyte handling. Relaxin, a hormone secreted by the corpus luteum, has been shown to induce pregnancy-like increases in renal blood flow and glomerular filtration rate (GFR) and alter osmoregulation in nonpregnant female and male rats. However, its effects on renal electrolyte handling are unknown. Accordingly, the influence of short (2 h)- and long-term (7 day) infusion of relaxin on renal function was determined in the male rat. Short term infusion of recombinant human relaxin (rhRLX) at 4 microg.h(-1).100 g body wt(-1) induced a significant increase in effective renal blood flow (ERBF) within 45 min, which peaked at 2 h of infusion (vehicle, n = 6, 2.1 +/- 0.4 vs. rhRLX, n = 7, 8.1 +/- 1.1 ml.min(-1).100 g body wt(-1), P < 0.01). GFR and urinary excretion of electrolytes were unaffected. After a 7-day infusion of rhRLX at 4 microg/h, ERBF (1.4 +/- 0.2 vs. 2.5 +/- 0.4 ml.min(-1).100 g body wt(-1), P < 0.05), urine flow rate (3.1 +/- 0.3 vs. 4.3 +/- 0.4 microl.min(-1).100 g body wt(-1), P < 0.05) and urinary sodium excretion (0.8 +/- 0.1 vs. 1.2 +/- 0.1 micromol.min(-1).100 g body wt(-1), P < 0.05) were significantly higher; plasma osmolality and sodium concentrations were lower in rhRLX-treated rats. These data show that long-term relaxin infusion induces a natriuresis and diuresis in the male rat. The mechanisms involved are unclear, but they do not involve changes in plasma aldosterone or atrial natriuretic peptide concentrations.  相似文献   

4.
Bicarbonate reabsorption in the thick ascending limb of Henle's loop was examined by studies of free-water clearance (CH2O) and free-water reabsorption (TcH2O). During maximal water diuresis in the dog, CH2O/GFR was taken as an indes of sodium reabsorption in, and urine flow (V/GFR) as an index of delivery of filtrate to, this scarbonate, infusion of a nonreabsorbable solute (hypotonic mannitol) and administration of an inhibitor of bicarbonate reabsorption (acetaent, but less than that achieved with hypotonic saline infusion. This suggests that sodium that sodium bicarbonate is not reabsorbed in the ascending limb. Rather, it is the sodium chloride, swept out of the proximal tubule by osmotic diuresis due to nonreabsorbed mannitol or sodium bicarbonate, that is reabsorbed in the ascending limb thereby increasing CH2O, whereas the nonreabsorption of mannitol and sodium bicarbonate results in a depressed CH20 per unit V when compared with hypotonic saline. V/GFR is not a satisfactory index of delivery to the ascending limb during osmotic diuresis, since it includes water obligated by nonreabsorbable solutes. When a better index of delivery, the sum of the clearances of chloride (CC1) and free-water (CH2O) is used, hypotonic bicarbonate infusion, hypotonic mannitol infusion and acetazolamide administration increase CH2O/GFR per unit delivery to the same extent as odes hypotonic saline infusion. Studies in dogs and rats on TcH2O also indicate that sodium bicarbonate is an impermeant solute in the ascending limb. Osmotic diuresis due to sodium bicarbonate diuresis, produced either by inhibition of sodium bicarbonate reabsorption (acetazolamide, L-lysine mono-hydrochloride) or infusion of sodium bicarbonate, or mannitol diuresis both produced marked chloruresis and increased TcH2O to the same extent as did hypertonic saline infusion. If chloride excretion was almost eliminated by hemodialysis against a chloride-free dialysate (dogs) or prolonged feeding of a salt-free diet (rats), TcH2O formation was unimpaired if hypertonic saline was infused but virtually obliterated during mannitol or sodium bicarbonate diuresis. Sodium reabsorption in the ascending limb, therefore, appears to be dependent upon chloride as the accompanying anion. At any given rate of bicarbonate excretion, more cloride is delivered out of the proximal tubule (as estimated from CC1 + CH2O) with hypotonic sodium bicarbonate infusion than with acetazolamide administration. This suggests that magnitude of the chlorutesis accompanying bicarbonate diuresis depends, not only on osmotic diuresis due to nonreabsorbed sodium bicarbonate, but also on the extent to which concomitant changes in effective extracellular volume influence overall sodium chloride reabsorption.  相似文献   

5.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

6.
1. A study on the renal handling of urea by the dik-dik antelope (Rhynchotragus kirkii) was conducted. 2. Plasma and urine samples were analysed for osmolality, urea and creatinine concentrations during dehydration and intra-ruminal loading of potassium and sodium solutions. 3. The glomerular filtration rate (GFR) of the dik-dik was found to be 182.6 +/- 11.7 ml/min/100 kg body mass. 4. Dehydration was observed to increase tubular urea reabsorption and increase plasma and urine osmolalities, but had no effect on the amount of urea filtered at the glomerulus. 5. Potassium loading increased both GFR and urine flow rate.  相似文献   

7.
Plasma levels of atrial natriuretic peptide (ANP) and the effect of exogenous ANP on renal function have been studied in newborn and adult rabbits. In order to investigate an age difference in responsiveness to ANP, we studied the renal effects of alpha-human ANP (1-28) administered at the same dose per kg body weight in adult and neonatal rabbits. Plasma basal ANP levels were similar in 18 newborn (4- to 11-day-old) compared to 7 adult rabbits (150 +/- 16 and 151 +/- 28 pg/ml, resp.). Eleven newborn and 11 adult rabbits were anesthetized and mechanically ventilated. After a control period, each animal received an hANP loading dose (3 micrograms/kg i.v.), followed by an infusion of 0.3 micrograms/kg/min. Blood gases remained stable throughout the experiment in both groups. Mean blood pressure decreased in newborn (28.5 +/- 0.8 to 26.2 +/- 1.0 mmHg) and adult (92 +/- 3 to 84 +/- 3 mmHg) animals. Percent hANP-induced changes in renal functions in newborn and adult rabbits were, respectively: urine flow rate: -21 +/- 4% and +57 +/- 8%; urinary sodium excretion: +4 +/- 7% and +81 +/- 11%; glomerular filtration rate (GFR): -19 +/- 4% and -4 +/- 6%; renal blood flow (RBF): -22 +/- 4% and -11 +/- 5%. As expected, diuresis and natriuresis increased in adult rabbits. Failure of hANP to increase natriuresis and diuresis in newborn rabbits could be related to the marked decrease in GFR, receptor immaturity and/or interactions with other hormonal systems.  相似文献   

8.
Renal responses to reducing dietary nitrogen were studied in four ewes during intravenous infusion of arginine vasopressin. The fall in urea excretion and in plasma urea concentration was accompanied by significant reduction in GFR and in urine osmolality. The fraction of filtered urea reabsorbed increased despite reduction in the urea U/P concentration ratio and this increase was sustained when the urea U/P ratio was further reduced at higher urine flows observed when the drinking water was replaced with saline. This procedure also sustained the RPF which in the absence of additional salt was significantly reduced on the low protein diet. It is suggested that the fall in GFR and the increase in the fraction of filtered urea reabsorbsed may contribute to nitrogen economy and that the increase in fractional reabsorption and the reduction in urine osmolality on the low protein diet provided evidence of active reabsorption of urea by renal tubules.  相似文献   

9.
During the EXEMSI experiment, an international crew of 4 subjects (1 woman and 3 men) was confined for 60 days in a normobaric diving chamber (with 1060 mbar atmospheric pressure) to simulate life in a space station and to assess the effects of confinement on psychological and physiological factors. Blood pressure and blood volume regulating hormones (atrial natriuretic peptide, renin, aldosterone) and urine data (24-h urine outputs, ionogram) were measured before (BDC: baseline data collection), during (D: day) and after (R: recovery) confinement. We also measured energy expenditure and total body water, 14 days before, and after 27 days of confinement, by the double-labeled water method. We found a marked increase in 24-h urine output during most of the confinement in the men and the woman. Body weight (-1.8 +/- 0.9 kg) and energy expenditure (-1064 +/- 143 kcal/d, p<0.01) decreased in the 3 men. The total body water (TBW) decreased by 1.5 +/- 1.2 l in the men. Stress was not indicated by plasma and urine catecholamines but plasma growth hormone was elevated on D2 (p<0.01 vs. BDC) in the men. This study shows that confinement conditions can modify body fluid (increases in 24-h urine outputs and TBW changes) and energetic metabolisms.  相似文献   

10.
The influence of renal nerves on proximal Na+ reabsorption was studied in clearance experiments with unilaterally renal-denervated conscious dogs prepared by surgical bladder division. Two types of experiments were made : A. maximal water diuresis, and B. Total blockade of distal NaCl reabsorption with ethacrynic acid and chlorothiazide. In maximal water diuresis CH2O + CNa was used as a measure of fluid delivery to the distal nephron. At similar GFR on both sides, the proximal reabsorption estimated as GFR--(CH2O + CNa) was 38.4 +/- 5.6 ml/min for the intact and 35.9 +/- 4.2 ml/min for the denervated kidney (n = 6, difference NS). After distal tubular blockade, proximal Na+ reabsorption calculated as filtered load minus urinary excretion was 3.84 +/- 0.43 mmol/min for the intact and 3.91 +/- 0.36 mmol/min for the denervated kidney (n = 6, difference NS). The fractional reabsorption of NA+ was 64.9 +/- 1.0% for the intact and 66.9 +/- 1.1% for the denervated kidney (difference NS). In contrast to data from renal denervation studies with anaesthetized animals, the present experiments did not show any difference in proximal reabsorption between the innervated- and denervated kidney. We conclude that in absence of anaesthesia renal efferent nerves have no major effect on NaCl transport in dog proximal tubule.  相似文献   

11.
The estimation of milk consumption in free-ranging seals using tritium dilution techniques makes the key assumption that the animals drink no pre-formed water during the experimental period. However, frequent observations of unweaned Antarctic fur seal pups drinking water at Iles Kerguelen necessitated the testing of this assumption. We estimated water flux rates of 30 pups (10.7+/-0.3 kg) in four experimental groups by isotopic dilution over 4 days. The groups were: (1) pups held in an open air enclosure without access to water to estimate fasting metabolic water production (MWP); (2) free-ranging pups not administered additional water; (3) pups held in an open air enclosure and given a total of 300 ml of fresh water to verify technique accuracy; and (4) free-ranging pups given 200 ml of fresh water. Pups without access to water exhibited water flux rates (20.5+/-0.8 ml kg(-1)d(-1)), which were significantly lower than those observed for the free-ranging group (33.0+/-1.7 ml kg(-1) d(-1)). Mean estimated pre-formed water intake for the free-ranging experimental groups was 12.6 ml kg(-1) d(-1). Thus, MWP, measured as total water intake during fasting, may be significantly over-estimated in free-ranging Antarctic fur seal pups at Iles Kerguelen and at other sites and subsequently milk intake rates may be underestimated.  相似文献   

12.
This paper describes and quantifies acute responses of the kidneys in correcting plasma volume, acid-base, and ion disturbances resulting from NaHCO(3) and KHCO(3) ingestion. Renal excretion of ions and water was studied in five men after ingestion of 3.57 mmol/kg body mass of sodium bicarbonate (NaHCO(3)) and, in a separate trial, potassium bicarbonate (KHCO(3)). Subjects had a Foley catheter inserted into the bladder and indwelling catheters placed into an antecubital vein and a brachial artery. Blood and urine were sampled in the 30-min period before, the 60-min period during, and the 210-min period after ingestion of the solutions. NaHCO(3) ingestion resulted in a rapid, transient diuresis and natriuresis. Cumulative urine output was 44 +/- 11% of ingested volume, resulting in a 555 +/- 119 ml increase in total body water at the end of the experiment. The cumulative increase (above basal levels) in renal Na(+) excretion accounted for 24 +/- 2% of ingested Na(+). In the KHCO(3) trial, arterial plasma K(+) concentration rapidly increased from 4.25 +/- 0.10 to a peak of 7.17 +/- 0.13 meq/l 140 min after the beginning of ingestion. This increase resulted in a pronounced, transient diuresis, with cumulative urine output at 270 min similar to the volume ingested, natriuresis, and a pronounced kaliuresis that was maintained until the end of the experiment. Cumulative (above basal) renal K(+) excretion at 270 min accounted for 26 +/- 5% of ingested K(+). The kidneys were important in mediating rapid corrections of substantial portions of the fluid and electrolyte disturbances resulting from ingestion of KHCO(3) and NaHCO(3) solutions.  相似文献   

13.
This article reports a study in which the equation for total body water (TBW) estimated from deuterium (2H2O)-dilution method and bioelectrical impedance measurement (BIM) is described. Subjects were 60 healthy males aged 30 +/- 18.3 yr (18-74) and 31 healthy females aged 37 +/- 17.5 yr (19-70). Total body water determined by the analysis of the dilution of orally ingested deuterium oxide (1g2H2O, 99.75 atom % excess/kg body weight) in urine. Bioelectrical impedance was measured for each subjects in a supine position using an electrical impedance analyzer (500 microA, 50kHz, T-1988K, Toyo Physical Inc.) with a four electrodes (Y-250, Nihon Kohden). The mean values of total body water and the impedance in males and females subjects were 34.1 +/- 4.27 l and 25.7 +/- 2.42 l, 567 +/- 28.5 omega and 562 +/- 32.5 omega, respectively. Height squared divided by resistance (Ht2/R) correlated well with TBW as measured by 2H2 O, r = 0.530 (p less than 0.001) in males and r = 0.782 (p less than 0.001) in females. The best-fitting regression equation to predict TBW comprised Ht2/R(X1) and body weight (X2) (R = 0.915, SEE = 1.70 l in males and R = 0.834, SEE = 1.28 l in females). Equations were provided with BIM instrument for the prediction of TBW: for males TBW, l = 0.1983X1 + 0.4004X2 - 0.7938 and for females TBW, l = 0.3536X1 + 0.1269X2 + 3.3417. These results suggest that bioelectrical impedance measurement is a useful measure of total body water in Japanese subjects.  相似文献   

14.
M J Camargo  S A Atlas  T Maack 《Life sciences》1986,38(26):2397-2404
One of the major renal hemodynamic actions of atrial natriuretic factor (ANF) is to increase glomerular filtration rate (GFR). To assess the role of this effect on ANF-induced natriuresis (UNaV), diuresis (V) and kaliuresis (UKV) we performed late clamp experiments in six rats. After control periods (C), synthetic ANF (auriculin A) was infused i.v. (2 micrograms X min-1/kg body wt) throughout the experiment (150 min). After pre-clamp periods, the perfusion pressure of the left kidney (LK) was reduced to 75-80 mmHg. The right kidney (RK) served as a time control. In LK, before the late clamp, ANF increased (p less than 0.01) GFR from 1.5 +/- 0.1 to 1.8 +/- 0.1 ml/min, V from 17 +/- 5 to 53 +/- 5 microliters/min, and UNaV from 2.1 +/- 0.6 to 10.0 +/- 0.9 microEq/min. Almost identical increases occurred in the RK. The late clamp returned all parameters in LK to C values (p greater than 0.05): GFR to 1.4 +/- 0.1 ml/min, V to 6.3 +/- 1.2 microliter/min, and UNaV to 1.0 +/- 0.3 microEq/min. The late clamp also reversed the ANF-induced increase in UKV. In the RK, GFR (1.8 +/- 0.1 ml/min), V (38 +/- 4 microliter/min) and UNaV (7.8 +/- 0.8 microEq/min) remained elevated (p less than 0.01 vs. C) to the end of the experiment. These data demonstrate that upon return of GFR to control levels, the ANF-induced diuresis, natriuresis and kaliuresis is abolished. The results support our previous view that the increase in GFR together with a decrease in inner-medullary hypertonicity account wholly or in great part for the natriuretic action of ANF.  相似文献   

15.
Water influx rates (WIR) measured with tritiated water dilution were compared with direct measures of water and energy intake in glaucous gulls (Larus hyperboreus). Total body water (TBW) measured isotopically was also compared with TBW determined by body composition analysis (BCA) of the same birds. Seventeen wild gulls were captured and studied in outdoor enclosures at Ny-Alesund, Svalbard, in July 2002. Gulls were hand-fed known quantities of Arctic cod (Boreogadus saida) or given water on the basis of one of four experimental treatments: (A) fasting, (B) fish only, (C) water only, or (D) fish and water. Water and energy content of Arctic cod was also determined. WIR of gulls (after subtracting metabolic water production) in treatments A, B, C, and D were 0, 101 +/- 5, 62 +/- 19, and 122 +/- 21 SD g d(-1), respectively. Measured water intake in each group was 0, 111 +/- 2, 64 +/- 3, and 134 +/- 15 SD g d(-1), respectively. On average, WIR underestimated measured water intake in each group. Errors were lowest but most variable for gulls fed water only (-2.2% +/- 32.8%) compared with gulls fed fish only (-9.0% +/- 5.4%) or fish and water (-9.0% +/- 7.0%). Compared with measured water intake, errors in WIR were relatively low overall (-6.9% +/- 17.4%) and comparable to previous validation studies. The difference in TBW determined by BCA versus isotopic dilution ranged between -1.02% and +8.59% of mass. On average, TBW measured isotopically (632 +/- 24 g kg(-1)) overestimated true body water by a factor of 1.033.  相似文献   

16.
To maintain water balance, nectar-feeding vertebrates oscillate between meeting the challenges of avoiding overhydration and preventing dehydration. To understand how green-backed firecrowns (Sephanoides sephanoides) accomplish this, we examined the response of water-handling processes in the gastrointestinal tract (GIT) and kidney to different rates of water intake during the evening, night, and morning. Fractional water absorption in the GIT was independent of water intake rate (evening: 0.91 +/- 0.08; morning: 0.88 +/- 0.04). Consistent with this nonregulated water absorption, we found linear increases in water flux, fractional turnover of body water, and the rate of renal water loading as water intake rate increased during both the evening and morning. Despite these relationships, glomerular filtration rate (GFR) was insensitive to water loading (evening: 2.08 +/- 0.56 ml/h; morning: 1.84 +/- 0.68 ml/h) and less than the allometric expectation (2.92 ml/h). During the evening, fractional renal water reabsorption decreased linearly as the rate of water intake increased. At night, a period of natural fasting for hummingbirds, mean GFR was not different from zero (0.00 +/- 0.05 ml/h). These findings indicate that green-backed firecrowns eliminate excess ingested water by decreasing water reabsorption in the kidney; to conserve water, it appears that hummingbirds arrest whole kidney GFR, effectively preventing urinary water losses. After discounting evaporative water losses, our results show that hummingbirds rely principally on their renal system to resolve the osmoregulatory quandary posed by nectarivory.  相似文献   

17.
In phocid seals, the transition to nutritional independence is abrupt, with females abandoning their offspring after weaning and returning to sea. We hypothesized that body size at weaning may play an important role in the nature of this transition. We studied the changes in body composition and water flux of newly weaning harbour seals over the first 4-6 wk postweaning. Thirty-three pups were dosed with deuterium oxide to estimate total body water (TBW) and a subset of 24 was dosed twice to estimate changes in body composition and water flux. All pups lost body mass over the study period, but TBW increased during the period of mass loss, indicating continued lean tissue growth. Combined data from this and our early study indicated that heavy (>median mass) pups were relatively fatter (41.0% vs. 37.1%) and had significantly greater total body energy at weaning than did light (< or = median mass) pups. Percentage TBW declined linearly over time in light pups but was constant in heavy pups for the first 19 d postweaning and then declined linearly. Both the temporal pattern and composition of mass loss differed between light and heavy pups. Estimated food intake increased in the second 2 wk of study compared to the first 2 wk, in both light and heavy pups, reflecting increased foraging success but at levels still insufficient to meet daily expenditures of most individuals.  相似文献   

18.
Diuretic and uricosuric properties have traditionally been attributed to corn silk, stigma/style of Zea mays L. Although the diuretic effect was confirmed, studies of the plant's effects on renal function or solute excretion were lacking. Thus, we studied the effects of corn silk aqueous extract on the urinary excretion of water, Na+, K+, and uric acid. Glomerular and proximal tubular function and Na+ tubular handling were also studied. Conscious, unrestrained adult male rats were housed in individual metabolic cages (IMC) with continuous urine collection for 5 and 3 h, following two protocols. The effects of 25, 50, 200, 350, and 500 mg/kg body wt. corn silk extract on urine volume plus Na+ and K+ excretions were studied in water-loaded conscious rats (2.5 ml/100 g body wt.) in the IMC for 5 h (Protocol 1). Kaliuresis was observed with doses of 350 (100.42 +/- 22.32-120.28 +/- 19.70 microEq/5 h/100 g body wt.; n = 13) and 500 mg/kg body wt. (94.97+/- 29.30-134.32 +/- 39.98 microEq/5h/100 g body wt.; n = 12; p<0.01), and the latter dose resulted in diuresis as well (1.98 +/- 0.44-2.41 +/- 0.41 ml/5 h/100 g body wt.; n = 12; p<0.05). The effects of a 500 mg/kg body wt. dose of corn silk extract on urine volume, Na+, K+ and uric acid excretions, and glomerular and proximal tubular function, were measured respectively by creatinine (Cler) and Li+ (ClLi) clearances and Na+ tubular handling, in water-loaded rats (5 ml/100 g body wt.) in the IMC for 3 h (Protocol 2). Clcr (294.6 +/- 73.2, n = 12, to 241.7 +/- 48.0 microl/ min/100 g body wt.; n = 13; p<0.05) and the Na+ filtered load (41.9 +/- 10.3, n = 12, to 34.3 +/- .8, n = 13, p<0.05) decreased and ClLi and Na+ excretion were unchanged, while K+ excretion (0.1044 +/- 0.0458, n=12, to 0.2289 +/- 0.0583 microEq/min/100 body wt.; n = 13; p<0.001) increased. For Na+ tubular handling, the fractional proximal tubular reabsorption (91.5 +/- 3.5, n = 12, to 87.5 +/- 3.4%; n = 13; p<0.01) decreased, and both fractional distal reabsorptions--I and II--increased (96.5 +/- 1.5, n = 12, to 97.8 +/- 0.9%; n = 13; p<0.01; and 8.2 +/- 3.5, n = 12, to 12.2 +/- 3.4%, n = 13, p<0.01, respectively). To summarize, in water-loaded conscious rats (2.5 ml/100 body wt.), corn silk aqueous extract is diuretic at a dose of 500 mg/kg body wt. and kaliuretic at doses of 350 and 500 mg/kg body wt. In water-loaded conscious rats (5.0 ml/100 g body wt.), corn silk aqueous extract is kaliuretic at a dose of 500 mg/kg body wt., but glomerular filtration and filtered load decrease without affecting proximal tubular function, Na+, or uric acid excretion.  相似文献   

19.
During fasting most mammals preferentially utilize lipid reserves for energy while sparing protein reserves. This presents a potential problem for marine mammals that also depend on lipids as a major component of blubber, the primary thermoregulatory structure. Because of this dual function for lipid, rates of lipid and protein utilization should be closely regulated during the postweaning fast in northern elephant seals (Mirounga angustirostris). To quantify energy expenditure during the fast, we measured body mass and composition of 60 pups at 2.3+/-0.2 days and 55.9+/-0.3 days postweaning in 1999 and in 2000. Body condition differed significantly between years. At weaning, body mass (125.9+/-3.8 kg) and percentage lipid content (39.3+/-0.6% of body mass) in 2000 were significantly greater than body mass (115.2+/-3.1 kg) and percentage lipid content (35.8+/-0.6%) in 1999. In general, percentage lipid content increased with body mass, and fatter pups utilized lipid at relatively higher rates during the fast. Lipid fueled 85-95% and 88-98% of energy expended by pups in 1999 and 2000, respectively. Postweaning fast duration (32-78 days) was positively correlated with body mass and hence lipid content at weaning. This suggests that body composition at weaning influences lipid utilization patterns and ultimately the duration of the postweaning fast in northern elephant seal pups.  相似文献   

20.
Parameters of water-salt balance in Wistar rats were compared on empty stomach and at standard alimentary regimen (satiated animals). On empty stomach, the blood serum osmolatity amounted to 284 +/- 2, while in satiated rats--to 290 +/- 5 mOsm/kg H2O (p < 0.05); sodium ion concentration on empty stomach lower, whereas no difference in potassium concentration was found. After an intragastric administration of water (5 ml/100 g body mass) to unanaesthetised rats, the blood serum osmolality decreased, while diuresis increased to an equal extent in both groups of rats. For 120 min after the water administration the rats on an empty stomach excreted 92.9% of the administrated fluid, whereas the satiated animals--80.7%. The urine composition differed qualitatively: in fasting rats the increment of diuresis was due to a rise of osmotic free water excretion, whereas in satiated rats--to an increase of excretion of osmotic active substances (including Na and K ions) with water and a simultaneous increase of the osmotic free water reabsorption in the kidney. After the water load and injection of 0.005 nmole/100 g body mass of arginine-vasopressin for 2 hr of the study, diuresis in both groups of animals decreased to an equal extent, but in fasting animals this was due mostly to an increase of the osmotic free water. The data obtained indicate that, under conditions of usual alimentary regimen, the response of kidney to the water load had a character of a volume-regulating response, whereas in fasting rats--of the specific osmorequlating one. A problem is discussed of the concept of norm under usual conditions and at certain clinically accepted restrictions, for instance, on empty stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号