首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquatic Botany》2005,81(1):1-11
Seed bank samples were collected from Huli Marsh, a subtropical shallow water mountainous marsh in Hunan Province, South China. Core samples were divided into upper and lower layers (each 5 cm in depth) and allowed to germinate in three water levels (0, 5 and 10 cm) over a 4-month period. A total of 51 species germinated and the mean density was 9211 ± 7188 seedlings m−2. In the top 5 cm 41 species and 5747 ± 5111 seedlings m−2 germinated, whereas 40 species and 3464 ± 3363 seedlings m−2 did so from 5–10 cm. Germinated seedling density was significantly higher in the upper layer, largely due to differences in eight species. With increasing experimental water depth, less seedlings germinated: respectively, 9788 ± 7157 m−2, 2050 ± 2412 m−2 and 1978 ± 2616 m−2, of 44, 21 and 19 species, submerged under 0, 5 or 10 cm. Seven species could emerge only in 0 water level. Vallisneria natans occurred only in 5 cm water, whereas Ottelia alismoides occurred in 10 cm water. In the vegetation survey of the marsh, 25 species were recorded, which was less than half of the species recorded in the seed bank. The top 10 dominants in the standing vegetation, accounting for 89% of vegetation abundance, represented only 10% in the seed bank. Twenty germinated species that also occurred in the standing vegetation accounted for 56% of the total seed bank. Our observed number of species germinating from a Chinese wetland seed bank is within the range observed elsewhere in the northern hemisphere (15–113 species).  相似文献   

2.
We analysed endemic threatened tree and reptile species of Socotra Island (Yemen), characterised by different ecological requirements and spatial distribution, in order to evaluate the usefulness of spatial ecological modelling in the estimation of species extent of occurrence (EOO) and area of occupancy (AOO). Point occurrences for the entire species range were used to model their spatial distribution by Random Forest (RF) and Generalised Linear Model (GLM). For each species the suitability area (SA) was obtained by applying the 0% omission error criterion on the probability map, and compared or integrated with EOO and AOO area obtained by topological methods such as the minimum convex polygon (MCP), α-hull and 2 km × 2 km grid.RF showed a lower prediction error than GLM. Higher accuracy was achieved for species with higher number of occurrences and narrower ecological niche. SA was always greater than AOO measured with the 2 km × 2 km grid method. SA was greater than EOO, measured by both MCP and α-hull methods, for species with localised distribution, while it was smaller for widely distributed species. EOO-α-hull area was equal or smaller than that calculated by MCP depending on the spatial distribution of species. AOO measured considering the SA within the EOO-MCP was greater than that measured using the standard 2 km × 2 km grid. Conversely, AOO calculated considering the suitable area within the EOO-α-hull showed variable results, being smaller or greater than the 2 km × 2 km grid AOO depending on the ecological niche and spatial distribution of species. According to our results, SEM does not provide an effective alternative to topological methods for the estimate of EOO and AOO. However, it may be considered a useful tool to estimate AOO within the boundaries of EOO measured by the α-hull method, because it reduces some potential sources of inconsistency and bias.  相似文献   

3.
The EU 2020 Biodiversity Strategy requires the gathering of information on biodiversity to aid in monitoring progress towards its main targets. Common species are good proxies for the diversity and integrity of ecosystems, since they are key elements of the biomass, structure, functioning of ecosystems, and therefore of the supply of ecosystem services. In this sense, we aimed to develop a spatially-explicit indicator of habitat quality (HQI) at European level based on the species included in the European Common Bird Index, also grouped into their major habitat types (farmland and forest). Using species occurrences from the European Breeding Birds Atlas (at 50 km × 50 km) and the maximum entropy algorithm, we derived species distribution maps using refined occurrence data based on species ecology. This allowed us to cope with the limitations arising from modelling common and widespread species, obtaining habitat suitability maps for each species at finer spatial resolution (10 km × 10 km grid), which provided higher model accuracy. Analysis of the spatial patterns of local and relative species richness (defined as the ratio between species richness in a given location and the average richness in the regional context) for the common birds analysed demonstrated that the development of a HQI based on species richness needs to account for the regional species pool in order to make objective comparisons between regions. In this way, we proved that relative species richness compensated for the bias caused by the inherent heterogeneous patterns of the species distributions that was yielding larger local species richness in areas where most of the target species have the core of their distribution range. The method presented in this study provides a robust and innovative indicator of habitat quality which can be used to make comparisons between regions at the European scale, and therefore potentially applied to measure progress towards the EU Biodiversity Strategy targets. Finally, since species distribution models are based on breeding birds, the HQI can be also interpreted as a measure of the capacity of ecosystems to provide and maintain nursery/reproductive habitats for terrestrial species, a key maintenance and regulation ecosystem service.  相似文献   

4.
Afrotropical ant-following birds are vulnerable to forest loss and disturbance, but critical habitat thresholds regarding their abundance and species richness in human-dominated landscapes, including industrial oil palm plantations, have never been assessed. We measured forest cover through Landsat imagery and recorded species richness and relative abundance of 20 ant-following birds in 48 plots of 1-km2, covering three landscapes of Southwest Cameroon: Korup National Park, smallholder agroforestry areas (with farms embedded in forest), and an industrial oil palm plantation. We evaluated differences in encounter frequency and species richness among landscapes, and the presence of critical thresholds through enhanced adaptive regression through hinges. All species were detected in Korup National Park and the agroforestry landscape, which had similar forest cover (>85%). Only nine species were found in the oil palm plantation (forest cover = 10.3 ± 3.3%). At the 1-km2 scale, the number of species and bird encounters were comparable in agroforests and the protected area: mean species richness ranged from 12.2 ± 0.6 in the park and 12.2 ± 0.6 in the agroforestry matrix to 1.0 ± 0.4 in the industrial oil palm plantation; whereas encounters decreased from 34.4 ± 3.2 to 26.1 ± 2.9 and 1.3 ± 0.4, respectively. Bird encounters decreased linearly with decreasing forest cover, down to an extinction threshold identified at 24% forest cover. Species richness declined linearly by ca. one species per 7.4% forest cover lost. We identified an extinction threshold at 52% forest cover for the most sensitive species (Criniger chloronotus, Dicrurus atripennis, and Neocossyphus poensis). Our results show that substantial proportions of forests are required to sustain complete ant-following bird assemblages in Afrotropical landscapes and confirm the high sensitivity of this bird guild to deforestation after industrial oil palm development. Securing both forest biodiversity and food production in an Afrotropical production landscape may be best attained through a combination of protected areas and wildlife-friendly agroforestry.  相似文献   

5.
In this study, we evaluated various parameters of sperm cryopreservation in two livebearers, guppies (Poecilia reticulata) and black mollies (P. latipinna). Our results suggested a common freezing protocol for the guppies and mollies: suspend sperm in Hanks’ balanced salt solution (HBSS) at 300 mOsm/kg, use 14% glycerol as cryoprotectant, cool at 25 °C/min, and thaw at 40 °C in a water bath for 7 s. Live young were produced from females inseminated with frozen-thawed sperm in both species. In guppies, percent fertilization (F) and the number of embryos (N) produced with cryopreserved sperm (F = 50%, N = 74, from 26 females) were similar to those of fresh controls (F = 54%, N = 61, from 22 females). Interestingly, this same freezing protocol has been used successfully for sperm cryopreservation in green swordtails Xiphophorus helleri, and platyfish of X. couchianus with post-thaw motility as high as 80%. All these species belong to the family of Poeciliidae, and their sperm are similar in morphology exhibiting the absence of acrosome, elongate sperm head, and the long mitochondrial sheaths. Besides their internal fertilization reproduction mode, these fish are also small in size (2–4 cm) and live in a freshwater environment. Sperm cryopreservation in fish has been generally recognized as species specific, and new protocols are required for new species. However, results presented in this study suggested otherwise. Thus, sperm cryopreservation methods optimized for one species may be applicable to others if they are taxonomical closely related species with similar sperm morphology and reproduction mode. Considering the enormous number of fish species on the planet, development of generalized sperm freezing protocols for species in groups could have additional advantages for genetic conservation.  相似文献   

6.
7.
The current analyses of vegetation were aimed to study the different effects of environmental variables and plant species and communities interaction to these variables, identified threats to local vegetation and suggestion for remedial measures in the Mount Eelum, Swat, Pakistan. For assessment of environmental variability quantitative ecological techniques were used through quadrats having sizes of 2 × 2, 5 × 5 and 10 × 10 m2 for herbs, shrubs and trees respectively. Result of the present study revealed 124 plant species in the study area. Canonical Correspondence Analysis (CCA) was used to analyze the ecological gradient of vegetation. The environmental data and species abundance were used in CANOCO software version 4.5. The presence absence data of plant species were elaborated with Cluster and Two Way Cluster Analysis techniques using PC-ORD version 5 to show different species composition that resulted in five plant communities. Findings indicate that elevation, aspect and soil texture are the strongest variables that have significant effect on species composition and distribution of various communities shown with P value 0.0500. It is recommended to protect and use sensibly whole of the Flora normally and rare species particularly in the region.  相似文献   

8.
Minor and trace elements in foraminiferal carbonates are potential paleo-proxies of climate, nutrient and seawater composition. There are very few reports of trace element composition of symbiont-bearing, larger foraminifera that are known to be important constituents of shallow-marine, modern and ancient carbonates. In this paper we examine the range of variation in Mg and Sr content of Recent species of these foraminifera from a lagoon of Lakshadweep Atoll (Indian Ocean) and Akajima Islands, Japan. Two hyaline species, Amphistegina lessonii and Neorotalia calcar,and two porcellaneous species, Amphisorus hemprichii and Marginopora vertebralis were collected live from Lakshadweep islands. Mg / Ca in these foraminifera is of an order of magnitude higher than the values reported for planktonic and symbiont-free benthic foraminifera. The Sr / Ca values are, however, comparable with the reported values in other foraminiferal taxa and they are found to vary within a narrow range. Electron-probe micro-analysis of three symbiont-bearing benthic species indicates spatial heterogeneity of high orders in Mg / Ca composition in all the species. The annual variation in temperature and pH of the lagoon water cannot explain the observed amplitude of the compositional variation. The photosynthesis and respiration of the symbionts and host foraminifera are possibly the major cause of compositional heterogeneity in individual tests, as has also been recently postulated for symbiont-bearing planktonic foraminiferal species. It highlights the need to isolate biological factors and necessitates species-specific paleotemperature scale in paleoclimatic analysis. We also analyzed δ18O, δ13C, Ca, Mg and Sr in carefully dissected chambers of a reef-dwelling, porcellaneous benthic foraminifer, Marginopora kudakajimaensis, collected live in four seasons. A moderate positive correlation is observed between Mg / Ca and temperature. However, large inter- and intra-test variation in Mg limits the precision of Mg / Ca as palaeotemperature proxy. The Sr / Ca of the test calcite is unrelated to temperature of the sea water. The δ13C of M. kudakajimaensis does not correlate with δ18O, Mg / Ca or Sr / Ca.  相似文献   

9.
Frugivorous animals play a major role in dispersing tropical, and to a lesser extent, temperate tree species. In order to attract potential seed dispersers, plants generally offer a reward of fleshy fruit pulp. Criteria for fruit choice by avian frugivores are influenced by a number of non-nutritive (e.g. fruit size and colour) factors; and nutritional composition of the fruit. There is a paucity of nutritional composition and other fruit trait data of indigenous South African fruit. This information is necessary in order to determine which frugivores are likely to ingest which fruits and consequently act as potential seed dispersal agents. This information would provide us with an understanding of the inter-relationships between indigenous fruit and frugivores in South Africa. Consequently nutritional composition was investigated in various indigenous fruit species that avian frugivores feed on. Fruits were collected from 38 indigenous tree species found in KwaZulu-Natal Afromontane and coastal forests. Pulp was freeze-dried to constant mass and then analysed for sugar, lipid and protein content; and for water content determination. Fruit width in this study ranged from 4 mm (Searsia rehmanniana and Trema orientalis) to 40 mm (Annona senegalensis, Ficus sur and Xylotheca kraussiana). Of the fruits examined in this study 29% were black and 43% were red when ripe. Most (84%) fruit species analysed for sugar content were hexose dominant with 50% being fructose and 34% being glucose dominant. Only 16% of the fruit species analysed were sucrose dominant. Fruits in this study were generally observed to be high (mean: 68.1 ± 3.3%; n = 30) in water content; and low in protein and lipid content respectively (mean: 8.2 ± 0.5%; 9.3 ± 2.2%; n = 30) indicating that these fruit species could be considered as nutrient-dilute. Future studies need to determine the nutritional composition of the remaining indigenous South African fruit in order to develop a comprehensive database as well as examining non-nutritive factors.  相似文献   

10.
Populations of granivorous farmland birds have dramatically declined during recent decades in many European countries. Winter conditions and consequently, survival rates of farmland bird species during this critical period, are considered as one of the main causes of this negative trend. However, the importance of different habitat structures and connected food sources for successful overwintering in bird species has gained little attention so far in the Czech Republic. In this study we aimed to examine the role of habitat composition and food availability on winter distribution and abundance of three declining sedentary and granivorous bird species. During the winters 2009–2014, 149 villages in the Czech Republic were monitored for distribution and density of three farmland seed-eaters. House Sparrow was the most dominant species (88.6% of villages occupied; 4.32 ± 4.67 ind./100 m of transect), followed by Tree Sparrow (67.1% villages occupied; 1.83 ± 3.53 ind./100 m of transect) and Collared Dove (65.8% villages occupied; 0.72 ± 1.51 ind./100 m of transect). Occurrence of House and Tree Sparrow was significantly affected by the number of instances of poultry keeping. In both species, occupied villages showed a higher number of instances of poultry keeping. We did not find any such significant relationship for Collared Dove. Density of House Sparrow was significantly higher in villages with dairy farms, but we failed to find this relationship for Tree Sparrow and Collared Dove. Habitat preferences were similar for all three studied species. They positively responded to the proportion of shrubs/trees, the keeping of poultry, dairy farms and they avoided houses, arable land and grasslands. We conclude that poultry keepings and dairy farms can be important for studied species during the winter since they offer high food availability and good protection against predators. This suggestion is supported by the fact that long-term population decline has coincided with a long-term reduction in the keeping of poultry and dairy farms in the Czech Republic during the last 50 years.  相似文献   

11.
Field metabolic rate (FMR) is a useful measure for the energy expenditure in free-ranging animals. Field metabolic rates for species that have not been measured are usually predicted by allometric equations on the basis of their body mass (BM). Phylogenetically informed methods improve estimates of both allometric relationships and species-specific FMR values by considering the evolutionary history of species. Further improvement is possible by incorporating isolated measurements on BM and FMR, but most existing methods force the user to discard such incomplete data. In the present study the FMR of most Australian marsupial species was predicted for the first time using a phylogenetic method that was explicitly designed to handle incomplete data. This allows full use of the dataset containing 35 samples of FMR and 130 samples of BM. Cross-validation demonstrated that FMRs were estimated with high accuracy. The resulting prediction equation was FMR (kJ day? 1) = 5.27 BM (g)0.69. Field metabolic rate and BM were highly phylogenetically correlated (r = 0.96), i.e. FMR and BM co-evolved. Differences between species-specific and generic marsupial estimates of FMR revealed that herbivores have lower energy expenditure than carnivores. Specifically, herbivorous macropods have on average lower relative FMR (kJ/d) (3.75 ± 0.53 BM0.69; mean ± SD) than carnivorous dasyurids (7.64 ± 0.84 BM0.69). Phylogenetically informed estimates for most extant Australian marsupial species are now available.  相似文献   

12.
Nature conservation and ecological restoration crucially depends on the knowledge about spatial patterns of plant species that control habitat conversion and disturbance regimes. Especially, species abundances are capable of indicating early development tendencies for setting habitat management strategies. This study demonstrates the transfer of field spectroscopy to hyperspectral imagery to map multiple plant species abundances in an open dryland area using two imaging spectrometers in two different phenological phases. We show that species abundances can partially be described by multiple gradients forming different coordinates in a contour map. For this purpose, species abundances were projected into an ordination space using non-metric multidimensional scaling and subsequent spatial interpolation. It was demonstrated that different gradients can be modeled in a Partial Least Squares regression framework resulting in distinct spectral features for certain gradient directions. We combine both objectives in a multiobjective NSGA-II procedure to maximize the quantitative determination of species abundance in ordination and spectral predictability in related field spectra, simultaneously. NSGA-II was finally used to select optimal spectral models for n = 35 single species that were transferred to hyperspectral imagery for mapping purpose. We can show that abundance predictabilities can be evaluated on the basis of individual model performances that hold different spectral features for each species in a designated phenological phase. Finally, we present spatially explicit multi-species maps for the best n = 18 and abundance maps for n = 8 models that could be linked to patterns of species richness, coexistence, succession stages and habitat type conditions.  相似文献   

13.
Two new Vibrio species, Vibrio aestivus and Vibrio quintilis, are described after a polyphasic characterization of strains M22T, M61 and M62T, isolated from seawater collected off a beach on the East coast of Spain (Valencia). All three strains are Gram negative, mesophilic, slightly halophilic, fermentative rods. V. aestivus (M22T = CECT 7558T = CAIM 1861T = KCTC 23860T and M61 = CECT 7559 = CAIM 1862 = KCTC 23861) is oxidase positive, reduces nitrates to nitrites, is negative for Voges Proskauer, arginine dihydrolase and indole and non hydrolytic on most substrates tested. The 16S rRNA gene sequences of M22T and M61 are most similar to Vibrio marisflavi (97.1–97.2%) but phylogenetic analysis using NJ, MP and ML methods display Vibrio stylophorae (96.2% similarity) as sibling species. The three species form a deep clade in the genus Vibrio. Average Nucleotide Identity (ANI) values, determined as a measure of overall genomic resemblance, confirmed that strains M22T and M61 are members of the same species, different to V. marisflavi CECT 7928T.V. quintilis (M62T = CECT 7734T = CAIM 1863T = KCTC 23833T) is aerogenic, arginine dihydrolase and Voges Proskauer positive, oxidase negative and unable to reduce nitrate, traits shared by most species in the Gazogenes clade. It is unpigmented and does not grow on TCBS Agar. 16S rRNA gene similarities to its nearest species, Vibrio aerogenes and Vibrio mangrovi, are 97.6% and 96.0% respectively. Strain M62T and V. aerogenes CECT 7868T display ANI values well below the 95% boundary for genomic species.  相似文献   

14.
Predicted global climate change has prompted numerous studies of thermal tolerances of marine species. The upper thermal tolerance is unknown for most marine species, but will determine their vulnerability to ocean warming. Gastropods in the family Turbinidae are widely harvested for human consumption. To investigate the responses of turbinid snails to future conditions we determined critical thermal maxima (CTMax) and preferred temperatures of Turbo militaris and Lunella undulata from the tropical-temperate overlap region of northern New South Wales, on the Australian east coast. CTMax were determined at two warming rates: 1 °C/30 min and 1 °C/12 h. The number of snails that lost attachment to the tank wall was recorded at each temperature increment. At the faster rate, T. militaris had a significantly higher CTMax (34.0 °C) than L. undulata (32.2 °C). At the slower rate the mean of both species was lower and there was no significant difference between them (29.4 °C for T. militaris and 29.6 °C for L. undulata). This is consistent with differences in thermal inertia possibly allowing animals to tolerate short periods at higher temperatures than is possible during longer exposure times, but other mechanisms are not discounted. The thermoregulatory behaviour of the turban snails was determined in a horizontal thermal gradient. Both species actively sought out particular temperatures along the gradient, suggesting that behavioural responses may be important in ameliorating short-term temperature changes. The preferred temperatures of both species were higher at night (24.0 °C and 26.0 °C) than during the day (22.0 °C and 23.9 °C). As the snails approached their preferred temperature, net hourly displacement decreased. Preferred temperatures were within the average seasonal seawater temperature range in this region. However, with future predicted water temperature trends, the species could experience increased periods of thermal stress, possibly exceeding CTMax and potentially leading to range contractions.  相似文献   

15.
Little is known about how the growth of individual Gambierdiscus species responds to environmental factors. This study examined the effects of temperature (15–34 °C), salinity (15–41) and irradiance (2–664 μmol photons m−2 s−1) on growth of Gambierdiscus: G. australes, G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus and G. ruetzleri and one putative new species, Gambierdiscus ribotype 2. Depending on species, temperatures where maximum growth occurred varied between 26.5 and 31.1 °C. The upper and lower thermal limits for all species were between 31–34 °C and 15–21 °C, respectively. The shapes of the temperature vs. growth curves indicated that even small differences of 1–2 °C notably affected growth potentials. Salinities where maximum growth occurred varied between 24.7 and 35, while the lowest salinities supporting growth ranged from <14 to 20.9. These data indicated that Gambierdiscus species are more tolerant of lower salinities than is generally appreciated. Growth of all species began to decline markedly as salinities exceed 35.1–39.4. The highest salinity tested in this study (41), however, was lethal to only one species, Gambierdiscus ribotype 2. The combined salinity data indicated that differences in salinity regimes may affect relative species abundances and distributions, particularly when salinities are <20 and >35. All eight Gambierdiscus species were adapted to relatively low light conditions, exhibiting growth maxima at 50–230 μmol photons m−2 s−1 and requiring only 6–17 μmol photons m−2 s−1 to maintain growth. These low light requirements indicate that Gambierdiscus growth can occur up to 150 m depth in tropical waters, with optimal light regimes often extending to 75 m. The combined temperature, salinity and light requirements of Gambierdiscus can be used to define latitudinal ranges and species-specific habitats, as well as to inform predictive models.  相似文献   

16.
The identification of shape and size of sampling units that maximises the number of plant species recorded in multiscale sampling designs has major implications in conservation planning and monitoring actions. In this paper we tested the effect of three sampling shapes (rectangles, squared, and randomly shaped sampling units) on the number of recorded species. We used a large dataset derived from the network of protected areas in the Siena Province, Italy. This dataset is composed of plant species occurrence data recorded from 604 plots (10 m × 10 m), each divided in a grid of 16 contiguous subplot units (2.5 m × 2.5 m). Moreover, we evaluated the effect of plot orientation along the main environmental gradient, to examine how the selection of plot orientation (when elongated plots are used) influences the number of species collected. In total, 1041 plant species were recorded from the study plots. A significantly higher species richness was recorded by the random arrangement of 4 subplots within each plot in comparison to the ‘rectangle’ and ‘square’ shapes. Although the rectangular shape captured a significant larger number of species than squared ones, plot orientation along the main environmental gradient did not show a systematic effect on the number of recorded species. We concluded that the choice of whether or not using elongated (rectangular) versus squared plots should dependent upon the objectives of the specific survey with squared plots being more suitable for assessing species composition of more homogeneous vegetation units and rectangular plots being more suited for recording more species in the pooled sample of a large area.  相似文献   

17.
We studied the natural colonisation of new species in experimental grasslands varying in plant species richness (from 1 to 60) and plant functional group richness (from 1 to 4) in either regularly or never weeded subplots during the first 3 years after establishment. Sown species established successfully, with no differences in species richness or their relative abundances between the regularly and never weeded subplots during the study period. Aboveground biomass of sown species increased with increasing sown species richness in both treatments. While a positive relationship between sown species richness and total aboveground biomass (including colonising species) existed in the 2nd year after sowing in the regularly and never weeded subplots, this positive relationship decayed in the 3rd year in the never weeded subplots because of a higher biomass of colonising species in species-poor mixtures. Total aboveground biomass varied independently of total species richness 3 years after sowing in both treatments. Jaccard similarity of coloniser species composition between regularly and never weeded subplots decreased from the 2nd to the 3rd year, indicating a divergence in coloniser species composition. Coloniser immigration and turnover rates were higher in regularly weeded subplots, confirming that weeding counteracts species saturation and increases the chance that new colonisers would establish. Although our study shows that low diversity plant communities are unstable and converge to higher levels of biodiversity, the effects of initially sown species on community composition persisted 3 years after sowing even when allowing for succession, suggesting that colonising species mainly filled empty niche space.  相似文献   

18.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   

19.
Alburnus alburnus alborella is a fish species native to northern Italy. It has suffered a very sharp decrease in population over the last 20 years due to human impact. Therefore, it was selected for reintroduction projects. In this research project, support vector machines (SVM) were tested as possible tools for building reliable models of presence/absence of the species. A system of 198 sites located along the rivers of Piedmont in North-Western Italy was investigated. At each site, 19 physical-chemical and environmental variables were measured. We verified that performances did not improve after feature selection but, instead, they slightly decreased (from Correctly Classified Instances [CCI] = 84.34 and Cohen's k [k] = 0.69 to CCI = 82.81 and k = 0.66). However, feature selection is crucial in identifying the relevant features for the presence/absence of the species. We then compared SVMs performances with decision trees (DTs) and artificial neural networks (ANNs) built using the same dataset. SVMs outperformed DTs (CCI = 81.39 and k = 0.63) but not ANNs (CCI = 83.03 and k = 0.66), showing that SVMs and ANNs are the best performing models, proving that their application in freshwater management is more promising than traditional and other machine-learning techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号