首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.  相似文献   

3.
During one growing season, the effects of enhanced ultraviolet-B (UV-B) radiation, exogenous abscisic acid (ABA) and their combination on biomass accumulation, gas exchange, endogenous ABA, the concentration of UV-absorbing compounds, antioxidant system and on the carbon (C) and nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana Rehd. populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves, and enhanced UV-B treatments were applied using a square-wave system to expose the seedlings to ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, net CO2 assimilation rate (A), stomatal conductance (gs), transpiration rate (E) and carbon (C) content in leaves, and significantly increased the activities of superoxide dismutase (SOD) and guaiacol peroxidase (GPx), and the contents of hydrogen peroxide (H2O2) and malonaldehyde (MDA), as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA induced a significant decrease in A and significant increases in the activities of SOD and GPx, in the content of H2O2 and MDA, and in the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, and in the activities of SOD and GPx, as well as in endogenous ABA in the leaves and roots of both populations. Across all treatments, the C and N contents of leaves were strongly correlated with their contents in stems and roots. Additionally, the N content of leaves and stems were significantly correlated with the C content of stems.  相似文献   

4.
In this study, we examined the influence of UV-B radiation (280–320 nm) on ABA accumulation in 14-day-old Arabidopsis thaliana (L.) Heynh plants of wild type (WT), ethylene receptor mutant (etr1-1), and mutant with a constitutively active ethylene signal transduction pathway (ctr1-1). ABA content in nonirradiated WT plants was twice higher than in each mutant. UV-B irradiation caused dose-dependent ABA accumulation in WT plants. In the etr1-1 mutant, the amount of accumulated ABA was significantly less. In the ctr1-1 mutant, ABA content didn’t increase after UV-B irradiation. These data suggest that start of stress-induced ABA formation requires the adjustable ethylene signal pathway. In the ctr1-1 mutant, a constitutively active (nonadjustable) ethylene signal pathway blocks stress-induced ABA accumulation.  相似文献   

5.
6.
The plant hormone abscisic acid (ABA) plays a crucial role in root architecture; however, the molecular mechanism of ABA-regulated lateral root (LR) growth is not well known. We screened an Arabidopsis thaliana mutant with LR growth that was sensitive to ABA from a T-DNA insertion mutant library, which was an allelic mutant of plgg1-1, termed plgg1-2. PLGG1 encodes a chloroplast protein that transports plastidic glycolate and glycerate. The length and number of LRs at the root-hypocotyl junction of plgg1-1 and plgg1-2 were significantly impaired under exogenous ABA treatment, and the transgenic plant complementary lines of plgg1-2 restored LR growth in response to ABA. In addition, we found that PLGG1 is involved in other major ABA responses, including ABA-inhibited seed germination, ABA-mediated stomatal movement, and drought tolerance. These findings open new perspectives on elucidating the mechanism of ABA response, and provide clues for analysing the functions of chloroplast proteins in regulating root growth.  相似文献   

7.
A number of protein and RNA-processing mutants have been shown to affect ABA sensitivity. A new mutant, sad2-1, was isolated from a T-DNA mutagenized population of RD29A:LUC plants and shown to have increased luminescence after ABA, salt, cold or polyethylene glycol treatments. Expression of several ABA- and stress-responsive genes was higher in the mutant than in the wild type. sad2-1 also exhibited ABA hypersensitivity in seed germination and seedling growth. SAD2 was found to encode an importin beta-domain family protein likely to be involved in nuclear transport. SAD2 was expressed at a low level in all tissues examined except flowers, but SAD2 expression was not inducible by ABA or stress. Subcellular localization of GFP-tagged SAD2 showed a predominantly nuclear localization, consistent with a role for SAD2 in nuclear transport. Knockout of the closest importin beta homolog of SAD2 in Arabidopsis did not duplicate the sad2 phenotype, indicating that SAD2 plays a specific role in ABA signaling. Analysis of RD29A:LUC luminescence and ABA and stress sensitivity in double mutants of sad2-1 and sad1 or abh1-7, a newly isolated allele of ABH1 also in the RD29A:LUC background, suggested that SAD2 acts upstream of or has additive effects with these two genes. The results suggest a role for nuclear transport in ABA signal transduction, and the possible roles of SAD2 in relation to that of SAD1 and ABH1 are discussed.  相似文献   

8.
Liu Y  Zhong Z C 《农业工程》2009,29(4):244-248
The impact of UV-B radiation on endogenous hormones in plants has recently drawn attention from researchers. The mechanism for reduced stem elongation by UV-B might be due to changes in the phytohormone levels, especially IAA, which plays a role in stem elongation. In this study, effects of UV-B radiation on Trichosanthes kirilowii Maxim (T. kirilowii) seedlings in greenhouse-grown plants were investigated. The results indicated that: (1) In comparison to controls, exposure to 0.029 Jm?2 s?1. UV-B radiation led to accumulation of endogenous abscisic acid (ABA) and zeatinriboside (ZR) in the plant contents, and decreased contents of endogenous indole-3-acetic acid (IAA) and gibberellic acid (GA1/3). Exposure to UV-B radiation reduced the height and leaf area of plants. As a result, total biomass (plant dry weight) was lower. (2) In comparison to controls, addition of 2 mg l?1 α-naphthaleneacetic acid (α-NAA) slightly increased the contents of IAA, GA1/3 and ZR, and decreased the content of ABA in leaves. This addition of α-NAA significantly increased plant height and leaf area, but only slightly increased total biomass. (3) Addition of α-NAA to UV-B-exposed plants: increased the content of endogenous IAA, GA1/3 and ZR; decreased accumulation of endogenous ABA; and increased plant height and leaf area in comparison to plants that only were exposed to UV-B. Moreover, total biomass increased slightly. This suggests that addition of α-NAA may compensate to a certain extent for the lack of IAA resulting from UV-B radiation; it also increases the content of GA1/3 and ZR, decreases the accumulation of ABA, and promotes the growth of plants.  相似文献   

9.
10.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated that is deficient in inorganic carbon transport. This mutant strain, designated pmp-1-16-5K (gene locus pmp-1), was selected on the basis of a requirement of elevated CO2 concentration for photoautrophic growth. Inorganic carbon accumulation in the mutant was considerably reduced in comparison to wild type, and the CO2 response of photosynthesis indicated a reduced affinity for CO2 in the mutant. At air levels of CO2 (0.03-0.04%), O2 inhibited photosynthesis and stimulated the synthesis of photorespiratory intermediates in the mutant but not in wild type. Neither strain was significantly affected by O2 at saturating CO2 concentration. Thus, the primary consequence of inorganic carbon transport deficiency in the mutant was a much lower internal CO2 concentration compared to wild type. From these observations, we conclude that enzyme-mediated transport of inorganic carbon is an essential component of the CO2 concentrating system in C. reinhardii photosynthesis.  相似文献   

11.
We exposed seedlings of Cotinus coggygria var. cinerea to drought and exogenous abscisic acid (ABA) under two different light conditions. Two watering regimes (well-watered and drought), two exogenous ABA applications (no ABA and with ABA) and two light regimes (full sunlight and shade) were employed. Compared with well-watered treatment, drought treatment significantly reduced the relative growth rate, relative water content (RWC), net photosynthesis rate (A) and transpiration (E), but increased chlorophyll a (chla), carbon isotope (δ13C), endogenous ABA, malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, and guaiacol peroxidase (POD) and catalase (CAT) activities. There was an apparent alleviation of drought effects by shade, as indicated by the lower relative growth rate, and chlorophyll, MDA and H2O2 contents, and increases in indoleacetic acid (IAA) and reduced glutathione (GSH) contents. On the other hand, the exogenous ABA application under shade induced protective effects on drought-stressed seedlings, as visible in RWC, MDA, A, stomatal conductance (gs), E, δ13C, ABA and IAA values. In all, our results suggest that seedlings of C. coggygria are more sensitive to drought under full-light than under shade.  相似文献   

12.
The compartmentation of endogenous abscisic acid (ABA), applied (±)-[3H]ABA, and (±)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (±)-[3H]ABA and the (±)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material.  相似文献   

13.
Responses of canola (Brassica napus L.) seedlings to three ultraviolet (UV)-B levels [0 (zero), 5 (ambient) and 10 (enhanced) kJ m?2 d?1], two watering regimes (well-watered and water-stressed), and two abscisic acid (ABA) levels (with and without application) were investigated. Overall, enhanced UVB and water stress negatively affected plant growth and physiology, but ABA had very little effect. Enhanced UVB decreased stem height, leaf area, plant dry matter, water use efficiency and wax content, but increased concentrations of chlorophyll a, carotenoids and flavonoids, and ethylene evolution. Water stress reduced stem height and diameter, leaf area, plant dry matter, leaf weight ratio and shoot:root weight ratio under zero and ambient UVB. Water stress also reduced chlorophyll a and carotenoids in plants exposed to enhanced UVB. ABA with watering regime had significant interactive effects only on leaf dry matter and wax content. We found that enhanced UVB and water stress adversely affected B. napus seedlings. Interaction between these two factors affected plant performance. In this interaction, ABA had little significant role. Also, optimum vegetative growth and biomass were achieved under ambient UVB.  相似文献   

14.
15.
16.
We found that glutathione (GSH) is involved in abscisic acid (ABA)-induced stomatal closure. Regulation of ABA signaling by GSH in guard cells was investigated using an Arabidopsis mutant, cad2-1, that is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase, and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). Glutathione contents in guard cells decreased along with ABA-induced stomatal closure. Decreasing GSH by both the cad2-1 mutation and CDNB treatment enhanced ABA-induced stomatal closure. Glutathione monoethyl ester (GSHmee) restored the GSH level in cad2-1 guard cells and complemented the stomatal phenotype of the mutant. Depletion of GSH did not significantly increase ABA-induced production of reactive oxygen species in guard cells and GSH did not affect either activation of plasma membrane Ca2+-permeable channel currents by ABA or oscillation of the cytosolic free Ca2+ concentration induced by ABA. These results indicate that GSH negatively modulates a signal component other than ROS production and Ca2+ oscillation in ABA signal pathway of Arabidopsis guard cells.  相似文献   

17.
The present study investigated whether, depending on the abscisic acid (ABA) concentration, phospholipase C (PLC) would be implicated within a Ca2+ mobilizing pathway that would regulate stomatal aperture under standard watering conditions. Among Al sensitive mutants the als1-1 mutant of Arabidopsis thaliana (L.) Heynh. (Columbia-4 ecotype) was selected for a pharmacological approach of stomatal closing in leaf epidermal peels induced by 3, 20 or 30 μM ABA. Comparison with the wild type (WT) revealed that, exclusively in the als1-1 mutant, the stomatal response to 3 or 20 μM ABA was inhibited by about 40 %, whereas the stomatal response to 30 μM ABA and the wilting response to drought were unaffected. In WT, the Ca2+ buffer EGTA and the PLC inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), specifically inhibited by about 70 and 40 %, respectively, the response to 3 or 20 μM ABA, while the Ca2+ buffer 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) inhibited by about 70 % the response to 3, 20 or 30 μM ABA. EGTA, BAPTA and U73122 did not inhibit the part of the response to 3 or 20 μM ABA that was unaffected by the als1-1 mutation. Together, these results showed that ABA closes the stomata through two different Ca2+ mobilizing pathways. Since PLC could be indirectly deactivated in the als1-1 mutant, these results might suggest that, under sufficient water supply, PLC-mediated Ca2+ mobilization is needed for the regulation of stomatal aperture by endogenous ABA resting at concentrations below a drought-specific threshold value.  相似文献   

18.
During the first hours of chilling, bean (Phaseolus vulgaris L., cv Mondragone) seedlings suffer severe water stress and wilt without any significant increase in leaf abscisic acid (ABA) content (P. Vernieri, A. Pardossi, F. Tognoni [1991] Aust J Plant Physiol 18: 25-35). Plants regain turgor after 30 to 40 h. We hypothesized that inability to rapidly synthesize ABA at low temperatures contributes to chilling-induced water stress and that turgor recovery after 30 to 40 h is mediated by changes in endogenous ABA content. Entire bean seedlings were subjected to long-term (up to 6 d) chilling (3°C, 0.2-0.4 kPa vapor pressure deficit, 100 μmol·m−2·s−1 photosynthetic photon flux density, continuous fluorescent light). During the first 24 h, stomata remained open, and plants rapidly wilted as leaf transpiration exceeded root water absorption. During this phase, ABA did not accumulate in leaves or in roots. After 24 h, ABA content increased in both tissues, leaf diffusion resistance increased, and plants rehydrated and regained turgor. No osmotic adjustment was associated with turgor recovery. Following turgor recovery, stomata remained closed, and ABA levels in both roots and leaves were elevated compared with controls. The application of ABA (0.1 mm) to the root system of the plants throughout exposure to 3°C prevented the chilling-induced water stress. Excised leaves fed 0.1 mm ABA via the transpiration stream had greater leaf diffusion resistance at 20 and 3°C compared with non-ABA fed controls, but the amount of ABA needed to elicit a given degree of stomatal closure was higher at 3°C compared with 20°C. These findings suggest that endogenous ABA may play a role in ameliorating plant water status during chilling.  相似文献   

19.
Bray EA 《Plant physiology》1991,97(2):817-820
Levels of endogenous abscisic acid (ABA) in wild type were not required for the synthesis of heat shock proteins in detached leaves of tomato (Lycopersicon esculentum Mill., cv Ailsa Craig). Heat-induced alterations in gene expression were the same in the ABA-deficient mutant of tomato, flacca, and the wild type. Heat tolerance of the mutant was marginally less that the wild type, and in contrast, ABA applications significantly reduced the heat tolerance of wild-type leaves. It was concluded that elevated levels of endogenous ABA are not involved in the tomato heat shock response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号