首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8 × 106 CFU g−1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108 CFU g−1 wet weight. Additionally, up to 4100 CFU mL−1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108 CFU g−1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400 cysts g−1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood.  相似文献   

2.
《Aquatic Botany》2007,86(4):337-345
The seasonal dynamics of seagrass and epiphytic algal primary production were measured in an eelgrass (Zostera marina) bed in the Akkeshi-ko estuary, Hokkaido, Japan (43°02′N, 144°52′E). During spring and early summer, eelgrass biomass increased, with a high production (maximum: 2.89 g C m−2 day−1), but the production and biomass of epiphytic algae remained low. In contrast, epiphytic algae bloomed in August, with a high production (5.21 g C m−2 day−1), but eelgrass production ceased and its biomass subsequently decreased. Therefore, the major primary producers in this eelgrass bed switched seasonally from eelgrass in spring and early summer to epiphytic algae in late summer and autumn. Epiphytic algae maintained similar productivity because of the change of photosynthetic kinetics and the dominant epiphytic diatom changed from highly adhesive species to less adhesive or filamentous small species during the bloom. This suggests that the change of epiphyte density and biomass was due to change of its loss rate, possibly due to herbivorous grazing rate. Moreover, competition between epiphytic algae and eelgrass for nutrients and light may also affect the dramatic seasonal changes in the major primary producers.  相似文献   

3.
The epiphytic component of four monospecific seagrass beds from Papua New Guinea was studied structurally and functionally. The floristic composition and abundance of the epiphytes on leaves of four seagrass species (Cymodoceoideae) showed considerable variation, but on all four seagrass species, the same algae were among the five quantitatively most important epiphytes: encrusting coralline algae, Cyanophyta, Ceramium gracillimum (Harv.) Mazoyer, Polysiphonia savatierii Hariot and Audouinella spp. The temporal pattern of the epiphytic algae showed more or less the same features on the four seagrass species.Annual mean biomass of epiphytes and seagrass leaves ranged from 54 g ADW m?2 in a community of Cymodocea rotundata Ehrenb. and Hempr. ex Aschers. to 169 g ADW m?2 in a community of Syringodium isoetifolium (Aschers.) Dandy. The contribution of the epiphytic component to the total above-ground biomass ranged from 22 to 24%. Productivity of epiphytes was highest on leaves of Halodule uninervis (Forssk.) Aschers. (2.12 g ADW m?2 sediment surface day?1) and the epiphytic community contributed 35–44% of the total above-ground production of these four seagrass communities.  相似文献   

4.
The coralline algae in the orders Corallinales and Sporolithales (subclass Corallinophycidae), with their high degree of mineralogical variability, pose a challenge to projections regarding mineralogy and response to ocean acidification. Here we relate skeletal carbonate mineralogy to a well-established phylogenetic framework and draw inferences about the effects of future changes in sea-water chemistry on these calcified red algae. A collection of 191 coralline algal specimens from New Zealand, representing 13 genera and 28 species, included members of three families: Corallinaceae, Hapalidiaceae, and Sporolithaceae. While most skeletal specimens were entirely calcitic (range: 73–100 wt.% calcite, mean 97 wt.% calcite, std dev = 5, n = 172), a considerable number contained at least some aragonite. Mg in calcite ranged from 10.5 to 16.4 wt.% MgCO3, with a mean of 13.1 wt.% MgCO3 (std dev = 1.1, n = 172). The genera Mesophyllum and Lithophyllum were especially variable. Growth habit, too, was related to mineralogy: geniculate coralline algae do not generally contain any aragonite. Mg content varied among coralline families: the Corallinaceae had the highest Mg content, followed by the Sporolithaceae and the Hapalidiaceae. Despite the significant differences among families, variation and overlap prevent the use of carbonate mineralogy as a taxonomic character in the coralline algae. Latitude (as a proxy for water temperature) had only a slight relationship to Mg content in coralline algae, contrary to trends observed in other biomineralising taxa. Temperate magnesium calcites, like those produced by coralline algae, are particularly vulnerable to ocean acidification. Changes in biomineralisation or species distribution may occur over the next few decades, particularly to species producing high-Mg calcite, as pH and CO2 dynamics change in coastal temperate oceans.  相似文献   

5.
A bloom of Karenia brevis Davis developed in September 2007 near Jacksonville, Florida and subsequently progressed south through east Florida coastal waters and the Atlantic Intracoastal Waterway (ICW). Maximum cell abundances exceeded 106 cells L−1 through October in the northern ICW between Jacksonville and the Indian River Lagoon. The bloom progressed further south during November, and terminated in December 2007 at densities of 104 cells L−1 in the ICW south of Jupiter Inlet, Florida. Brevetoxins were subsequently sampled in sediments and seagrass epiphytes in July and August 2008 in the ICW. Sediment brevetoxins occurred at concentrations of 11–15 ng PbTx-3 equivalents (g dry wt sediment)−1 in three of five basins in the northern ICW during summer 2008. Seagrass beds occur south of the Mosquito Lagoon in the ICW. Brevetoxins were detected in six of the nine seagrass beds sampled between the Mosquito Lagoon and Jupiter Inlet at concentrations of 6–18 ng (g dry wt epiphytes)−1. The highest brevetoxins concentrations were found in sediments near Patrick Air Force Base at 89 ng (g dry wt sediment)−1. In general, brevetoxins occurred in either seagrass epiphytes or sediments. Blades of the resident seagrass species have a maximum life span of less than six months, so it is postulated that brevetoxins could be transferred between epibenthic communities of individual blades in seagrass beds. The occurrence of brevetoxins in east Florida coast sediments and seagrass epiphytes up to eight months after bloom termination supports observations from the Florida west coast that brevetoxins can persist in marine ecosystems in the absence of sustained blooms. Furthermore, our observations show that brevetoxins can persist in sediments where seagrass communities are absent.  相似文献   

6.
7.
《Aquatic Botany》2004,80(3):177-191
Lack of submerged vegetation was studied in a small, shallow, alkaline, clear-water lake with high nitrate concentration (mean 9 mg NO3–N L−1) and profuse filamentous green algae (FGA) (mainly Spirogyra sp.). A laboratory microcosm and two lake enclosure experiments were carried out using Elodea nuttallii (Planchon) St John. E. nuttallii grew about 1.7 times as well in sediment from its place of origin compared with sediment from the lake. Differential water quality had no effect, and neither sediment nor water prevented growth in the lake. Nutrient addition reduced plant growth by more than 55% because of shading from epiphytic filamentous green algae (shoot dry weight versus epiphytic algal dry weight, r = −0.491, P < 0.05). Transplanted Elodea plants grew better in enclosures in the lake than in laboratory conditions with lake water and sediment (P < 0.001, t-test). Rare Elodea individuals in the lake indicate the presence of plant propagules in the lake sediment, but excessive growth of filamentous green algae (summer mean 3.2 g dry weight m−2) significantly hamperd plant growth (shoot length reduced from 29 ± S.E.M. 1 to 25 ± 1 cm) and bird herbivory significantly reduced survival (from 82 ± 7 to 40 ± 6%) and shoot growth (from 78 ± 6 to 18 ± 5 cm) and thus eliminates establishment of even modest plant beds. Fish disturbance and sediment stability were not important. Restoration of submerged plants may require reduction of nitrate input, control of filamentous green algae and protection from birds.  相似文献   

8.
Summary Detritus from common seagrasses and other marine angiosperms may often be a less important basis for estuarine food webs than previously believed. In NW Gulf of Mexico seagrass meadows, epiphytic algae have high productivities, palatability, and a more important trophic role than common large plants have. Interdisciplinary field experiments show (1) intensive night-time ingestion of epiphytes by various invertebrate detritivores, (2) very high productivity of epiphytic algae on seagrasses, and (3) assimilation of epiphytes rather than seagrasses, as measured by 13C comparisons. These combined data show that many naturally concentrated and potentially competing invertebrates in Gulf of Mexico seagrass meadows feed largely on the algal overgrowth on seagrass blades, even when such algae appear to be sparse. Primary productivity of these epiphytic algae can equal that of the seagrasses, per blade or per unit biomass. Animal 13C values tracked epiphytic values rather than seagrass values when comparisons were made over six sites. These measurements reinforce the view that epiphytic algae can be the primary basis of the food web in seagrass meadows.Contribution No. 608 of The University of Texas Marine Science Institute  相似文献   

9.
There is a world-wide trend for deteriorating water quality and light levels in the coastal zone, and this has been linked to declines in seagrass abundance. Localized management of seagrass meadow health requires that water quality guidelines for meeting seagrass growth requirements are available. Tropical seagrass meadows are diverse and can be highly dynamic and we have used this dynamism to identify light thresholds in multi-specific meadows dominated by Halodule uninervis in the northern Great Barrier Reef, Australia. Seagrass cover was measured at ∼3 month intervals from 2008 to 2011 at three sites: Magnetic Island (MI) Dunk Island (DI) and Green Island (GI). Photosynthetically active radiation was continuously measured within the seagrass canopy, and three light metrics were derived. Complete seagrass loss occurred at MI and DI and at these sites changes in seagrass cover were correlated with the three light metrics. Mean daily irradiance (Id) above 5 and 8.4 mol m−2 d−1 was associated with gains in seagrass at MI and DI, however a significant correlation (R = 0.649, p < 0.05) only occurred at MI. The second metric, percent of days below 3 mol m−2 d−1, correlated the most strongly (MI, R = −0.714, p < 0.01 and DI, R = −0.859, p = <0.001) with change in seagrass cover with 16–18% of days below 3 mol m−2 d−1 being associated with more than 50% seagrass loss. The third metric, the number of hours of light saturated irradiance (Hsat) was calculated using literature-derived data on saturating irradiance (Ek). Hsat correlated well (R = 0.686, p < 0.01; and DI, R = 0.704, p < 0.05) with change in seagrass abundance, and was very consistent between the two sites as 4 Hsat was associated with increases in seagrass abundance at both sites, and less than 4 Hsat with more than 50% loss. At the third site (GI), small seasonal losses of seagrass quickly recovered during the growth season and the light metrics did not correlate (p > 0.05) with change in percent cover, except for Id which was always high, but correlated with change in seagrass cover. Although distinct light thresholds were observed, the departure from threshold values was also important. For example, light levels that are well below the thresholds resulted in more severe loss of seagrass than those just below the threshold. Environmental managers aiming to achieve optimal seagrass growth conditions can use these threshold light metrics as guidelines; however, other environmental conditions, including seasonally varying temperature and nutrient availability, will influence seagrass responses above and below these thresholds.  相似文献   

10.
《Aquatic Botany》2007,86(1):14-24
The long-term sustainability of seagrasses in the subtropics and tropics depends on their ability to adapt to shifts in salinity regimes, particularly in light of present increases in coastal freshwater extractions and future climate change scenarios. Although there are major concerns world-wide on increased salinity in coastal estuaries, there is little quantitative information on the specific upper salinity tolerance of tropical and subtropical seagrass species. We examined seagrass hypersalinity tolerance under two scenarios: (1) when salinity is raised rapidly simulating a pulsed event, such as exposure to brine effluent, and (2) when salinity is raised slowly, characteristic of field conditions in shallow evaporative basins; the first in hydroponics (Experiments I and II) and the second in large mesocosms using intact sediment cores from the field (Experiment III). The three tropical seagrass species investigated in this study were highly tolerant of hypersaline conditions with a slow rate of salinity increase (1 psu d−1). None of the three species elicited total shoot mortality across the range of salinities examined (35–70 psu over 30 days exposures); representing in situ exposure ranges in Florida Bay, a shallow semi-enclosed subtropical lagoon with restricted circulation. Based on stress indicators, shoot decline, growth rates, and PAM florescence, all three species were able to tolerate salinities up to 55 psu, with Thalassia testudinum (60 psu) and Halodule wrightii (65 psu) eliciting a slightly higher salinity threshold than Ruppia maritima (55 psu). However, when salinity was pulsed, without a slow osmotic adjustment period, threshold levels dropped 20 psu to approximately 45 psu for T. testudinum. While we found these three seagrass species to be highly tolerant of high salinity, and conclude that hypersalinity probably does not solely cause seagrass dieoff events in Florida Bay, high salinity can modify carbon and O2 balance in the plant, potentially affecting the long-term health of the seagrass community.  相似文献   

11.
Studies of epiphytic dinoflagellates in Peter the Great Bay, Sea of Japan in 2008–2011 revealed the presence of 13 species. Five of the species are known as potentially toxic: Amphidinium carterae, A. operculatum, Ostreopsis cf. ovata, O. cf. siamensis and Prorocentrum lima. The maximum species richness and abundance of epiphytic dinoflagellates were observed in autumn (from September to October). Ostreopsis spp. were most widely distributed and predominated, amounting to 99% of the total density of dinoflagellates. Multi-year seasonal dynamics of Ostreopsis spp. in Peter the Great Bay showed that these cells appear as epiphyton in August after maximum warming of surface waters (22–24 °С) and disappear in early November, when the water temperature decreases below 7 °С. Ostreopsis spp. proliferation occurred in September, when the water temperature was 17.2–21.0 °C. The highest densities of Ostreopsis spp. were recorded on September 9, 2010 on the rhodophyte Neorhodomela aculeata – 230 × 103 cells g−1 DW or 52 × 103 cells g−1 FW. The spatial distribution of epiphytic dinoflagellates was investigated in the near-shore areas of Peter the Great Bay during the second half of September 2010 to evaluate the role of hydrodynamic conditions. Epiphytic dinoflagellates were not found in sheltered sites having weak mixing hydrodynamics. However, the abundances of Ostreopsis spp. were significantly higher at sites having moderate turbulence compared to biotopes experiencing strong wave action. Densities of Ostreopsis spp. were not significantly different on macrophytes with branched thallus of all taxonomic divisions. However, the average cell densities of Ostreopsis spp. on green algae with branched thallus were significantly higher than on green algae having laminar thallus.  相似文献   

12.
《Aquatic Botany》2007,87(4):299-306
This study comprised (1) a field survey of intertidal seagrass (Zostera capricorni) biomass, cover and photosynthetic potential and sediment characteristics at a range of contrasting sites in three New Zealand harbours, and (2) a microcosm experiment comparing plant responses to sediments from extant versus historical seagrass sites. The field survey showed that the sediment physico-chemical characteristics were generally consistent with the limited previous reports for Zostera environments, although the total P concentration range was higher (0.08–0.72 mg P g−1). Overall, 52% of variation in seagrass cover was explained by sediment water content (R = 0.54) and organic content (R = −0.56). Twenty-two percent of variation in seagrass biomass was explained by sediment total P and redox potential (both R = −0.35). Intra-harbour seagrass–sediment relationships were more significant (explaining up to 82% of plant variation) but harbour-specific. In the microcosm experiment, threefold higher Z. capricorni biomass was maintained on extant than historical sediments but not conclusively linked to measure sediment characteristics. Overall, the results of this study demonstrate that significant relations can exist between estuarine sediment conditions and Z. capricorni growth responses, and suggest that detrimental change in sediment conditions may be a contributing factor in seagrass decline.  相似文献   

13.
《Aquatic Botany》2008,88(4):299-306
This study comprised (1) a field survey of intertidal seagrass (Zostera capricorni) biomass, cover and photosynthetic potential and sediment characteristics at a range of contrasting sites in three New Zealand harbours, and (2) a microcosm experiment comparing plant responses to sediments from extant versus historical seagrass sites. The field survey showed that the sediment physico-chemical characteristics were generally consistent with the limited previous reports for Zostera environments, although the total P concentration range was higher (0.08–0.72 mg P g−1). Overall, 52% of variation in seagrass cover was explained by sediment water content (R = 0.54) and organic content (R = −0.56). Twenty-two percent of variation in seagrass biomass was explained by sediment total P and redox potential (both R = −0.35). Intra-harbour seagrass–sediment relationships were more significant (explaining up to 82% of plant variation) but harbour-specific. In the microcosm experiment, threefold higher Z. capricorni biomass was maintained on extant than historical sediments but not conclusively linked to measure sediment characteristics. Overall, the results of this study demonstrate that significant relations can exist between estuarine sediment conditions and Z. capricorni growth responses, and suggest that detrimental change in sediment conditions may be a contributing factor in seagrass decline.  相似文献   

14.
15.
Increased availability of dissolved CO2 in the ocean can enhance the productivity and growth of marine plants such as seagrasses and algae, but realised benefits may be contingent on additional conditions (e.g. light) that modify biotic interactions between these plant groups. The combined effects of future CO2 and differing light on the growth of seagrass and their algal epiphytes were tested by maintaining juvenile seagrasses Amphibolis antarctica under three different CO2 concentrations representing ambient, moderate future and high future forecasts (i.e. 390, 650 vs. 900 µl l?1) and two light levels representing low and high PAR (i.e. 43 vs. 167 µmol m?2 s?1). Aboveground and belowground biomass, leaf growth, epiphyte cover, tissue chemistry and photosynthetic parameters of seagrasses were measured. At low light, there was a neutral to positive effect of elevated CO2 on seagrass biomass and growth; at high light, this effect of CO2 switched toward negative, as growth and biomass decreased at the highest CO2 level. These opposing responses to CO2 appeared to be closely linked to the overgrowth of seagrass by filamentous algal epiphytes when high light and CO2 were combined. Importantly, all seagrass plants maintained positive leaf growth throughout the experiment, indicating that growth was inhibited by some experimental conditions but not arrested entirely. Therefore, while greater light or elevated CO2 provided direct physiological benefits for seagrasses, such benefits were likely negated by overgrowth of epiphytic algae when greater light and CO2 were combined. This result demonstrates how indirect ecological effects from epiphytes can modify independent physiological predictions for seagrass associated with global change.  相似文献   

16.
《Aquatic Botany》1987,27(4):363-383
During 1982, structural and functional aspects of the epiphytic component in a tropical mixed seagrass meadow, have been investigated for each seagrass species separately. This meadow consisted of the seagrasses Thalassia hemprichii (Ehrenb.) Aschers., Cymodocea serrulata (R.Br.) Aschers. et Magnus, C. rotundata Ehrenb. et Hempr. ex Aschers., Halodule uninervis (Forssk.) Aschers. and Syringodium isoetifolium (Aschers.) Dandy.No significant differences were observed in floristic composition, number of algal species, abundance and diversity of the epiphytic component. On an area basis, annual mean above-ground biomass (seagrass leaves and epiphytes), amounted to 82 g ADW, of which 18% could be ascribed to the epiphytic component. The contribution of the epiphytic component to the annual mean above-ground production ranged from 16% on leaves of Thalassia hemprichii to 33% on leaves of Cymodocea serrulata. Total annual mean epiphyte production was 4.6 g ADW m−2 sediment surface day−1 (19%).When including the macroalgal component of this mixed seagrass meadow, total annual mean above-ground plant biomass amounted to 93 g ADW (212 g DW) on an area basis, of which the epiphytes contributed 15.5% (28.5% DW), the macroalgal component 12% (32.5% DW) and the seagrass leaves 72.5% (39.5% DW). Aspects of the epiphytic component (e.g., floristic composition, abundance, biomass and production) in monospecific and mixed seagrass communities are discussed.  相似文献   

17.
Prokaryotic epiphytes on leaves of three seagrass species, Thalassodendron ciliatum, Thalassia hemprichii, and Cymodocea rotundata, from two Kenyan coastal sites, Nyali (a high‐nutrient site) and Vipingo (a low‐nutrient site), were characterized genetically and morphologically. Denaturing gradient gel electrophoresis (DGGE) and clone libraries of PCR‐amplified 16S rRNA gene fragments were used to study prokaryotes associated with these seagrasses. In general, the epiphytic coverage was greater in the high‐nutrient site, while the microbial diversity was linked to seagrass species rather than the study sites. Cytophaga–Flavobacteria–Bacteroides (CFB) were associated with T. ciliatum and T. hemprichii mainly in the nutrient‐poor site, while α‐, β‐, and γ‐proteobacteria were associated with all three species at the two study sites. Some bacteria phylotypes were closely related to sequences of microorganisms previously recovered from wastewaters or other contaminated sources, indicating the influx of land‐based wastes into these coastal lagoon ecosystems. The abundance of potential nitrogen (N2)‐fixing cyanobacteria on C.  rotundata, particularly in the low‐nutrient site, suggested that this association may have been acquired to meet N demands. Unicellular cyanobacteria were dominant and associated with C. rotundata and T. hemprichii (with those on T. hemprichii being closely related to cyanobacterial symbiotic species), while T. ciliatum was almost devoid of cyanobacterial associations at the same site (Nyali), which suggests specificity in the cyanobacteria–seagrass associations. The abundance of prokaryotic epiphytes was considered to be linked to water depth and tidal exposure.  相似文献   

18.
《Aquatic Botany》2005,83(3):161-174
The photosynthetic and repiratory metabolism of Zostera marina and maerl communities was compared, in the same area of the Bay of Brest in March–April, using benthic chambers. PE curves for both oxygen and carbon were established for bottom irradiances between 0 and 525 μmol m−2 s−1. An exponential function was fitted to calculate daily production. Community metabolic quotients did not differ for maerl and seagrass beds. Community photosynthetic quotients were significantly higher (1.19) whereas community respiratory quotients were lower (0.70) than 1. Maerl and seagrass bed PE curves mainly differed by the minimum saturating irradiance (Ek). Net community production was estimated to 26.8 mmol C m−2 d−1 for Z. marina meadows and 8.6 mmol C m−2 d−1 for maerl beds. The two communities can, therefore, be considered as autotrophic during the March–April period. Community respiration did not differ between Z. marina meadows and maerl beds, with an average value of 53.8 mmol C m−2 d−1 during a day. In similar environmental conditions, the production of maerl beds corresponds to approximately one third that of seagrass meadows. The maerl communities, therefore, form productive ecosystems, relevant to temperate coastal ecosystems functioning.  相似文献   

19.
The submarine reef terraces (L1–L12) of the Maui Nui Complex (MNC—the islands of Lanai, Molokai, Maui and Kahoolawe) in Hawaii provide a unique opportunity to investigate the impact of climate and sea level change on coral reef growth by examining changes in reef development through the Mid-Pleistocene Transition (900–800 ka). We present an analysis of the biological and sedimentary composition of the reefs that builds directly on recently published chronological and morphological data. We define nine distinct limestone facies and place them in a spatial and stratigraphic context within 12 reef terraces using ROV and submersible observations. These include oolitic, two coral reef, two coralline algal nodule, algal crust, hemi-pelagic mud, bioclastic and peloidal mud facies. These facies characterise environments from high energy shallow water coral reef crests to low energy non-reefal deep-water settings. Combining the bottom observations and sedimentary facies data, we report a shift in the observed sedimentary facies across the submerged reefs of the MNC from dominant shallow coral reef facies on the deep reefs to coralline algae dominated exposed outcrop morphology on the shallower reefs. We argue that this shift is a reflection of the change in period and amplitude of glacioeustatic sea level cycles (41 kyr and 60–70 m to 100 kyr and 120 m) during the Mid-Pleistocene Transition (MPT, ~ 800 ka), coupled with a slowing in the subsidence rate of the complex. The growth of stratigraphically thick coral reef units on the deep Pre-MPT reefs was due to the rapid subsidence of the substrate and the shorter, smaller amplitude sea level cycles allowing re-occupation and coral growth on successive cycle low-stands. Longer, larger amplitude sea level cycles after the MPT combined with greater vertical stability at this time produced conditions conducive to deep-water coralline algae growth which veneered the shallower terraces. Additionally, we compare reef development both within the MNC, and between the MNC and Hawaii. Finally we suggest that climatic forcings such as sea-surface temperature and oceanographic currents may also have influenced the distribution of coral species within the sample suite, e.g., the disappearance of the Acropora genus from the Maui Nui Complex in the Middle Pleistocene.  相似文献   

20.
《Aquatic Botany》2007,87(2):116-126
Zostera marina distribution is circum-global and tolerates a wide range of environmental conditions. Consequently, it is likely that populations have adapted to local environmental conditions of light, temperature and nutrient supply. We compared Z. marina growth dynamics over a 2-year period in relation to environmental characters at Jindong Bay, South Korea and Yaquina Bay, Oregon, USA. Water temperature in Jindong Bay showed stronger seasonal variation (summer–winter ΔT = 20 °C) than in Yaquina Bay (summer–winter ΔT < 5 °C). Underwater irradiance in Jindong Bay exhibited a winter maximum, while in Yaquina Bay underwater light exhibited a summer maximum. Integrated annual underwater irradiance during 2003 was 2200 and 1200 mol photons m−2 year−1 in Korea and Oregon, respectively. Z. marina shoot density, biomass and integrated production were not significantly different between the two study sites. Seasonal Z. marina growth in Jindong Bay appeared to be controlled by temperature and light, while the growth pattern in Yaquina Bay suggested light regulation. Several seagrass parameters were correlated to phosphate concentrations, even though nutrients did not appear limiting. Despite differences in environmental factors, relative growth rates and temporal growth dynamics between study sites, integrated annual leaf production was quite similar at 335 and 353 g DW m−2 year−1 in the Jindong and Yaquina Bay study sites. We suggest that Z. marina net productivity is acclimated to the local environmental conditions and may be a general characteristic of temperate seagrass populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号