首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Premise of study: Phylogenetic relationships of the papilionoid legumes (Papilionoideae) reveal that the early branches are more highly diverse in floral morphology than are other clades of Papilionoideae. This study attempts for the first time to comprehensively sample the early-branching clades of this economically and ecologically important legume subfamily and thus to resolve relationships among them. • Methods: Parsimony and Bayesian phylogenetic analyses of the plastid matK and trnL intron sequences included 29 genera not yet sampled in matK phylogenies of the Papilionoideae, 11 of which were sampled for DNA sequence data for the first time. • Key results: The comprehensively sampled matK phylogeny better resolved the deep-branching relationships and increased support for many clades within Papilionoideae. The potentially earliest-branching papilionoid clade does not include any genus traditionally assigned to tribe Swartzieae. Dipterygeae is monophyletic with the inclusion of Monopteryx. The genera Aldina and Amphimas represent two of the nine main but as yet unresolved lineages comprising the large 50-kb inversion clade within papilionoids. The quinolizidine-alkaloid-accumulating genistoid clade is expanded to include a strongly supported subclade containing Ormosia and the previously unplaced Clathrotropis s.s., Panurea, and Spirotropis. Camoensia is the first-branching genus of the core genistoids. • Conclusions: The well-resolved phylogeny of the earliest-branching papilionoids generated in this study will greatly facilitate the efforts to redefine and stabilize the classification of this legume subfamily. Many key floral traits did not often predict phylogenetic relationships, so comparative studies on floral evolution and plant–animal interactions, for example, should also benefit from this study.  相似文献   

2.
Phylogenetic analysis of the chloroplast-encoded rbcL gene in Leguminosae are consistent with previous hypotheses in suggesting that the family as a whole is monophyletic, but that only two of its three subfamilies are natural. The earliest dichotomies in the family appear to have involved tribes Cercideae or Cassieae (subtribe Dialiinae), followed by Detarieae/ Macrolobieae, all of which are members of subfamily Caesalpinioideae. The remainder of the family is divided into two clades: (1) Mimosoideae and the caesalpinioid tribes Caeasalpinieae and Cassieae (subtribes Ceratoniinae and Cassiinae); (2) Papilionoideae. Basal groups within Papilionoideae are, as expected, elements of the grade tribes Sophoreae and Swartzieae. Major clades within Papilionoideae include: (1) a Genistoid Alliance comprising Genisteae, Crotalarieae, Podalyrieae, Thermopsideae, Euchresteae, and also some Sophoreae; (2) a clade marked by the absence of one copy of the chloroplast inverted repeat, with which are associated Robinieae. Loteae, and some Sophoreae; (3) Phaseoleae, Desmodieae. Psoraleeae, and most Millettieae, a group also marked by presence of pseudoracemose inflorescences; and (4) a well-supported clade comprising Aeschynomeneae, Adesmieae, and some Dalbergieae. Nodulation is most parsimoniously optimized on the rbcL strict consensus tree as three parallel gains, occurring in Papilionoideae, the caesalpioioid ancestors of Mimosoideae, and in the genus Chamaecrista (Caesalpinieae: Cassieae).  相似文献   

3.
This is the first study to comprehensively address the phylogeny of the tribe Oxypodini Thomson and its phylogenetic relationships to other tribes within the staphylinid subfamily Aleocharinae. Using the hitherto largest molecular dataset of Aleocharinae comprising of 4599 bp for representatives of 22 tribes, the Oxypodini are recovered as non‐monophyletic. Members of the tribe belong to three distantly related lineages within the Aleocharinae: (i) the Amarochara group as sister clade to the tribe Aleocharini, (ii) the subtribe Tachyusina within a clade that also includes the tribes Athetini and Hygronomini, (iii) all other Oxypodini in a clade that also includes the tribes Placusini, Hoplandriini and Liparocephalini. Based on the inferred phylogeny, five subtribes of the Oxypodini are recognized: Dinardina Mulsant & Rey, Meoticina Seevers, Microglottina Fenyes, Oxypodina Thomson and Phloeoporina Thomson. The following changes in the classification of the Aleocharinae are proposed: (i) Amarochara Thomson is removed from the Oxypodini and placed in the tribe Aleocharini; (ii) the subtribe Taxicerina Lohse of the Athetini is reinstated as tribe Taxicerini to include Discerota Mulsant & Rey, Halobrecta Thomson (both removed from the Oxypodini) and Taxicera Mulsant & Rey; (iii) the subtribe Tachyusina Thomson is excluded from the Oxypodini and provisionally treated as tribe Tachyusini; (iv) the oxypodine subtribe name Blepharhymenina Klimaszewski & Peck is placed in synonymy with the subtribe name Dinardina Mulsant & Rey.  相似文献   

4.
Tiger beetles are a remarkable group that captivates amateur entomologists, taxonomists and evolutionary biologists alike. This diverse clade of beetles comprises about 2300 currently described species found across the globe. Despite the charisma and scientific interest of this lineage, remarkably few studies have examined its phylogenetic relationships with large taxon sampling. Prior phylogenetic studies have focused on relationships within cicindeline tribes or genera, and none of the studies have included sufficient taxon sampling to conclusively examine broad species patterns across the entire subfamily. Studies that have attempted to reconstruct higher‐level relationships of Cicindelinae have yielded conflicting results. Here, we present the first taxonomically comprehensive molecular phylogeny of Cicindelinae to date, with the goal of creating a framework for future studies focusing on this important insect lineage. We utilized all available published molecular data, generating a final concatenated dataset including 328 cicindeline species, with molecular data sampled from six protein‐coding gene fragments and three ribosomal gene fragments. Our maximum‐likelihood phylogenetic inferences recover Cicindelinae as sister to the wrinkled bark beetles of the subfamily Rhysodinae. This new phylogenetic hypothesis for Cicindelinae contradicts our current understanding of tiger beetle phylogenetic relationships, with several tribes, subtribes and genera being inferred as paraphyletic. Most notably, the tribe Manticorini is recovered nested within Platychilini including the genera Amblycheila Say, Omus Eschscholtz, Picnochile Motschulsky and Platychile Macleay. The tribe Megacephalini is recovered as paraphyletic due to the placement of the monophyletic subtribe Oxycheilina as sister to Cicindelini, whereas the monophyletic Megacephalina is inferred as sister to Oxycheilina, Cicindelini and Collyridini. The tribe Collyridini is paraphyletic with the subtribes Collyridina and Tricondylina in one clade, and Ctenostomina in a second one. The tribe Cicindelini is recovered as monophyletic although several genera are inferred as para‐ or polyphyletic. Our results provide a novel phylogenetic framework to revise the classification of tiger beetles and to encourage the generation of focused molecular datasets that will permit investigation of the evolutionary history of this lineage through space and time.  相似文献   

5.
The Menispermaceae family contains ca. 72 genera with 450 species that are almost entirely tropical. Its phylogeny at the tribal level has never been examined using molecular data. Here we used DNA sequences of the chloroplast matK gene and trnL-F regions, and the nuclear ITS region to study the delimitation and position of the tribe Menispermeae within the family and its subtribal monophyletic groups. Family-wide phylogenetic analyses of the chloroplast data produced two strongly supported clades. The first clade contains two subclades: Coscinieae including Arcangelisia and Anamirta, and Tinosporeae sensu lato including Fibraureae, supported by morphological characters, such as traits of the cotyledon, stylar scar and embryo. The second clade consists of the tribes Menispermeae sensu DC. and Tiliacoreae Miers. All our analyses surprisingly recognized that tribe Menispermeae is not monophyletic unless tribe Tiliacoreae is included, suggesting that characters of cotyledon and stylar scar are very important for the infrafamilial classification, and that endosperm presence vs. absence was over-emphasized in traditionally tribal division of the family. Our topologies indicate a secondary loss of endosperm. The monophyly of two subtribes of the tribe Menispermeae, Stephaniinae and Cissampelinae, is supported by the cpDNA and ITS data, as well as by morphological characters, including aperture types and shapes, and colpal membrane features of pollen grains, and sepal number of male flowers. The Cocculinae was recognized as a paraphyletic group containing the remaining genera of the tribe Menispermeae.  相似文献   

6.
The tribe Psoraleeae (Leguminosae subfamily Papilionoideae) comprises 185 species in nine genera that have a nearly worldwide distribution, occurring predominantly in Mediterranean regions. About 60% of the species belong to the genera, Otholobium C.H.Stirt. and Psoralea L., which have a centre of diversity in the Cape Floristic Region of South Africa. Since previous molecular studies have sampled only a few species of the tribe from this region, this study sought to determine the phylogenetic position of the southern African genera and to test whether they are monophyletic. Phylogenetic relationships were reconstructed using DNA sequence data (trnL-F, rpoB-trnC and ITS) and seven morphological characters, which diagnose the two southern African genera. The data were analysed using the parsimony method. There was strong support for the Psoraleeae as a clade, but most of the nodes within the large genera were poorly supported. The southern African species of Psoralea and Otholobium together formed a strongly supported clade. This clade was sister to the genus Hoita Rydb., but without support. However, the Psoralea species were nested within the southern African Otholobium. Additionally, some South American species that are currently recognised as Otholobium were resolved in a clade distinct from the southern African species, making Otholobium polyphyletic. Morphological characters that separate Otholobium and Psoralea are discussed. Finally, the southern African genera as currently circumscribed are not monophyletic. However, further investigations using more informative DNA loci are required to validate this observation. Furthermore, the taxonomic placement of the South American species needs to be reviewed.  相似文献   

7.
Sequences of nuclear chalcone synthase gene (Chs) were analyzed for species of the Brassicaceae family to reconstruct phylogenetic relationships. The phylogeny for 106 species of 60 genera was reconstructed, and assigned to 24 tribes, using maximum parsimony, maximum likelihood, and neighbor-joining methods. Most of the tribes can be assigned to the major lineages (Lineages I–III) suggested by Beilstein et al. (2006). The tribe Camelineae was not monophyletic. Conringia planisiliqua together with Orychophragmus violaceus would not be recognized as a new tribe proposed by the previous studies, and C. planisiliqua should be a member of tribe Isatideae. The genera delimitation and monophyly of the expanded Solms-laubachia were also confirmed by our data. Furthermore, one parent of inter-tribal allopolyploid Pachycladon appeared to be most closely associated with Crucihimalaya, Transberingia and tribes Boechereae and Halimolobeae, another parent was proved to be in tribe Smelowskieae.  相似文献   

8.
Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. Neither Cyrtonaias nor Psorula were supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias), Lampsilini (two lineages: Cyrtonaias explicata/Sphenonaias microdon, and Pachynaias), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the genera Psoronaias, Psorula and Popenaias. The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae.  相似文献   

9.
The amino acid composition of 56 lectins/isolectins, isolated from 50 species belonging to 16 different tribes of the Papilionoideae, have been used to construct phylogenetic trees and maps of both the Papilionoideae and the tribe Vicieae. Despite some discrepancies, the phylogenetic tree obtained for the Papilionoideae seems to be relevant at the tribal level. However, results obtained for the tribe Vicieae clearly indicate that the amino acid compositions of whole lectins and their constituent subunits are not suitable for discriminating between the various genera and species within the tribe. These findings are discussed in the light of the contribution of other chemical characters to the phylogeny of these groups.  相似文献   

10.
11.
VIVIANI, T., CONTE, L., CRISTOFOLINI, G. & SPERANZA, M., 1991. Sero-systematic and taximetric studies on the Phaseoleae (Fabaceae) and related tribes. One hundred and fifty-two species of Phaseoleae, Desmodieae, Indigofereae, Millettieae, Sophoreae and Swartzieae were subjected to a taximetric study. The serological relationships were analysed using 37 antigenic systems and 12 antisera upon a representative sample from the six tribes. The comparative use of taximetric and serological data allowed the following conclusions to be drawn: (1) the tribe Phaseoleae is not a natural taxon; the primitive complex Diocleinae-Glycininae, the more derived Phaseolinae, and the Cajaninae deserve tribal rank; the position of the remaining subtribes requires further examination. (2) The Desmodieae are related to the Phaseoleae, whereas the Indigofereae have little relation to them. (3) The Baphia -group in the Sophoreae is possibly related to the Phaseoleae ancestors, while the other Sophoreae belong to different phyletic lines. (4) Swartzia is morphologically related to the Sophoreae, but does not belong to the same natural group. (5) Sophoreae, Millettieae and Phaseoleae are three heterogeneous aggregates representing stages of increasing specialization, rather than elements of a single phyletic line.  相似文献   

12.
Here, we provide an exemplar-approach phylogeny of the xystodesmid millipede tribe Apheloriini with a focus on genus-group relationships-particularly of the genus Brachoria. Exemplars for the phylogenetic analysis were chosen to represent the maximum breadth of morphological diversity within all nominal genera in the tribe Apheloriini, and to broadly sample the genus Brachoria. In addition, three closely related tribes were used (Rhysodesmini, Nannariini, and Pachydesmini). Morphological and DNA sequence data were scored for Bayesian inference of phylogeny. Phylogenetic analysis resulted in polyphyletic genera Brachoria and Sigmoria, a monophyletic Apheloriini, and a "southern clade" that contains most of the tribal species diversity. We used this phylogeny to track morphological character histories and reconstruct ancestral states using stochastic character mapping. Based on the findings from the character mapping study, the diagnostic feature of the genus Brachoria, the cingulum, evolved independently in two lineages. We compared our phylogeny against prior classifications using Bayes factor hypothesis-testing and found that our phylogenetic hypothesis is inconsistent with the previous hypotheses underlying the most recent classification. With our preferred total-evidence phylogeny as a framework for taxonomic modifications, we describe a new genus, Appalachioria; supply phylogenetic diagnoses of monophyletic taxa; and provide a phylogeny-based classification for the tribe Apheloriini.  相似文献   

13.
Legume subfamily Caesalpinioideae accommodates approximately 2250 species in 171 genera which traditionally are placed in four tribes: Caesalpinieae, Cassieae, Cercideae and Detarieae. The monophyletic tribe Detarieae includes the Amherstieae subclade which contains about 55 genera. Our knowledge of the relationships among those genera is good in some cases but for many other genera phylogenetic relationships have been unclear. The non-monophyletic nature of at least two amherstioid genera, Cynometra and Hymenostegia has also complicated the picture. During the course of a multi-disciplinary study of Hymenostegia sensu lato, which includes phylogenetic analyses based on matK and trnL data, we have recovered the “Scorodophloeus clade”, an exclusively tropical African clade of four genera which includes the eponymous genus Scorodophloeus, two undescribed generic segregates of Hymenostegia sensu lato, and the previously unsampled rare monospecific genus Micklethwaitia from Mozambique. Zenkerella is suggested as a possible sister genus to the Scorodophloeus clade. A distribution map is presented of the seven species that belong to the Scorodophloeus clade.  相似文献   

14.
A parsimony‐based phylogenetic analysis of eighty‐three morphological characters of adults and immatures of seventy representatives of the tribes and subfamilies of Membracidae and two outgroup taxa was conducted to evaluate the status and relationships of these taxa. Centrotinae apparently gave rise to Nessorhinini and Oxyrhachini (both formerly treated as subfamilies, now syn.n. and syn.reinst., respectively, of Centrotinae). In contrast to previous analyses, a clade comprising Nicomiinae, Centronodinae, Centrodontinae, and the unplaced genera Holdgatiella Evans, Euwalkeria Goding and Antillotolania Ramos was recovered, but relationships within this clade were not well resolved. Nodonica bispinigera, gen.n. and sp.n., is described and placed in Centrodontini based on its sister‐group relationship to a clade comprising previously described genera of this tribe. Membracinae and Heteronotinae were consistently monophyletic. Neither Darninae nor Smiliinae, as previously defined, was monophyletic on the maximally parsimonious cladograms, but constraining both as monophyletic groups required only one additional step. The monophyly of Stegaspidinae, including Deiroderes Ramos (unplaced in Membracidae), was supported on some but not all equally parsimonious cladograms. More detailed analyses of individual subfamilies, as well as morphological data on the undescribed immatures of several membracid tribes and genera, will be needed to elucidate relationships among tribes and genera. A key to the subfamilies and tribes is provided.  相似文献   

15.
The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.  相似文献   

16.
Cladistic parsimony analyses of rbcL nucleotide sequence data from 171 taxa representing nearly all tribes and subtribes of Orchidaceae are presented here. These analyses divide the family into five primary monophyletic clades: apostasioid, cypripedioid, vanilloid, orchidoid, and epidendroid orchids, arranged in that order. These clades, with the exception of the vanilloids, essentially correspond to currently recognized subfamilies. A distinct subfamily, based upon tribe Vanilleae, is supported for Vanilla and its allies. The general tree topology is, for the most part, congruent with previously published hypotheses of intrafamilial relationships; however, there is no evidence supporting the previously recognized subfamilies Spiranthoideae, Neottioideae, or Vandoideae. Subfamily Spiranthoideae is embedded within a single clade containing members of Orchidoideae and sister to tribe Diurideae. Genera representing tribe Tropideae are placed within the epidendroid clade. Most traditional subtribal units are supported within each clade, but few tribes, as currently circumscribed, are monophyletic. Although powerful in assessing monophyly of clades within the family, in this case rbcL fails to provide strong support for the interrelationships of the subfamilies (i.e., along the spine of the tree). The cladograms presented here should serve as a standard to which future morphological and molecular studies can be compared.  相似文献   

17.
The monophyly of the ichneumonid clade Pimpliformes is established and the phylogenetic relationships of the eight component subfamilies are resolved. The clade (Acaenitinae + (Diacritinae + (Cylloceriinae + (Diplazontinae + Orthocentrinae)))) is the sister-lineage to the clade (Pimplinae + (Rhyssinae + Poemeniinae)). The Nearctic genus Cressonia Dasch is transferred to the Diacritinae from the Orthocentrinae. Tribes are not recognized in the Acaenitinae as the Coleocentrini (sensu Townes, 1971) is paraphyletic with respect to the Acaenitini. The Cylloceriinae is recognized as comprising three genera, Cylloceria Schiødte, Allomacrus Förster and Sweaterella gen.n. The Orthocentrinae, including the Helictinae of authors, is shown to be monophyletic, but the latter is clearly shown to be paraphyletic if the Orthocentrus genus-group is excluded. The Pimplinae comprises four monophyletic tribes: the Delomeristini, consisting of Delomerista Förster and Atractogaster Kriechbaumer; the Perithoini trib.n., which includes only Perithous Holmgren (= Hybomischos Baltazar syn.n.); the Pimplini, which includes the Theronia genus-group as well as the Pimpla genus-group; and the Ephialtini, which includes the Polysphinctini syn.n., a monophyletic group that previously rendered the restricted Ephialtini paraphyletic. The tribe Delomeristini is the sister-group to the clade (Ephialtini + (Perithoini + Pimplini)). The subfamily Poemeniinae is recognized as comprising three tribes: the Pseudorhyssini (trib.n.) which includes the single Holarctic genus Pseudorhyssa Merrill; the Rodrigamini (trib.n.) which includes only the Costa Rican genus Rodrigama Gauld; and the Poemeniini. The tribe Pseudorhyssini is the sister-group to the clade (Rodrigamini + Poemeniini). The phylogenetic inter-relationships of the genera of Poemeniini are resolved. A new genus from South Africa, Guptella (gen.n.) is described, and Achorocephalus Kriechbaumer is shown to be a synonym of Eugalta Cameron (syn.n.). The evolution of biological traits within the Pimpliformes is discussed with reference to the elucidated phylogeny, and zoogeographic patterns are outlined.  相似文献   

18.
Phylogenetic analysis of 330 plastid matK gene sequences, representing 235 genera from 37 of 39 tribes, and four outgroup taxa from eurosids I supports many well-resolved subclades within the Leguminosae. These results are generally consistent with those derived from other plastid sequence data (rbcL and trnL), but show greater resolution and clade support overall. In particular, the monophyly of subfamily Papilionoideae and at least seven major subclades are well-supported by bootstrap and Bayesian credibility values. These subclades are informally recognized as the Cladrastis clade, genistoid sensu lato, dalbergioid sensu lato, mirbelioid, millettioid, and robinioid clades, and the inverted-repeat-lacking clade (IRLC). The genistoid clade is expanded to include genera such as Poecilanthe, Cyclolobium, Bowdichia, and Diplotropis and thus contains the vast majority of papilionoids known to produce quinolizidine alkaloids. The dalbergioid clade is expanded to include the tribe Amorpheae. The mirbelioids include the tribes Bossiaeeae and Mirbelieae, with Hypocalypteae as its sister group. The millettioids comprise two major subclades that roughly correspond to the tribes Millettieae and Phaseoleae and represent the only major papilionoid clade marked by a macromorphological apomorphy, pseudoracemose inflorescences. The robinioids are expanded to include Sesbania and members of the tribe Loteae. The IRLC, the most species-rich subclade, is sister to the robinioids. Analysis of the matK data consistently resolves but modestly supports a clade comprising papilionoid taxa that accumulate canavanine in the seeds. This suggests a single origin for the biosynthesis of this most commonly produced of the nonprotein amino acids in legumes.  相似文献   

19.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

20.
The chloroplast gene matK and the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced from 17 samples of 13 species representing 6 genera of the angiosperm family Rhizophoraceae from China. Phylogenetic analyses were initially conducted based on sequences of the matK gene and the ITS regions, respectively, using Byrsonima crassifolia and Bunchosia armeniaca (Malpighiaceae) as outgroups. The partition–homogeneity test indicated that the two data sets are homogeneous. A combined analysis of the matK and ITS data generated a well supported phylogeny, which is topologically congruent with the two gene trees based on the Templeton test. The combined phylogeny shows that each genus formed a monophyletic group and the monophyletic relationships of the mangrove genera and of the inland genera were strongly supported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号