首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regional rheological differences in locomoting neutrophils   总被引:4,自引:0,他引:4  
Intracellular rheology is a useful probe of the mechanisms underlying spontaneous or chemotactic locomotion and transcellular migration of leukocytes. We characterized regional rheological differences between the leading, body, and trailing regions of isolated, adherent, and spontaneously locomoting human neutrophils. We optically trapped intracellular granules and measured their displacement for 500 ms after a 100-nm step change in the trap position. Results were analyzed in terms of simple viscoelasticity and with the use of structural damping (stress relaxation follows a power law in time). Structural damping fit the data better than did viscoelasticity. Regional viscoelastic stiffness and viscosity or structural damping storage and loss moduli were all significantly lower in leading regions than in pooled body and/or trailing regions (the latter were not significantly different). Structural damping showed similar levels of elastic and dissipative stresses in body and/or trailing regions; leading regions were significantly more fluidlike (increased power law exponent). Cytoskeletal disruption with cytochalasin D or nocodazole made body and/or trailing regions 50% less elastic and less viscous. Cytochalasin D completely suppressed pseudopodial formation and locomotion; nocodazole had no effect on leading regions. Neither drug changed the dissipation-storage energy ratio. These results differ from those of studies of neutrophils and other cell types probed at the cell membrane via 2-integrin receptors, which suggests a distinct role for the cell cortex or focal adhesion complexes. We conclude that 1) structural damping well describes intracellular rheology, and 2) while not conclusive, the significantly more fluidlike behavior of the leading edge supports the idea that intracellular pressure may be the origin of motive force in neutrophil locomotion. structural damping; power law; viscoelasticity; optical trap  相似文献   

2.
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: (1) what establishes the pathways of migration? And (2), what controls the final destination and differentiation of various neural crest subpopulations? These questions will be addressed in this Review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk.The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: (1) the vagal-level neural crest cells exhibit modest developmental bias; (2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively and (3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but take the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.Key words: neural crest, morphogenesis, cell migration, chicken embryo, fate restriction, vagal neural crest, pathways  相似文献   

3.
Neural crest cells are pluripotent cells that emerge from the neural epithelium, migrate extensively, and differentiate into numerous derivatives, including neurons, glial cells, pigment cells and connective tissue. Major questions concerning their morphogenesis include: 1) what establishes the pathways of migration and 2) what controls the final destination and differentiation of various neural crest subpopulations. These questions will be addressed in this review. Neural crest cells from the trunk level have been explored most extensively. Studies show that melanoblasts are specified shortly after they depart from the neural tube, and this specification directs their migration into the dorsolateral pathway. We also consider other reports that present strong evidence for ventrally migrating neural crest cells being similarly fate restricted. Cranial neural crest cells have been less analyzed in this regard but the preponderance of evidence indicates that either the cranial neural crest cells are not fate-restricted, or are extremely plastic in their developmental capability and that specification does not control pathfinding. Thus, the guidance mechanisms that control cranial neural crest migration and their behavior vary significantly from the trunk. The vagal neural crest arises at the axial level between the cranial and trunk neural crest and represents a transitional cell population between the head and trunk neural crest. We summarize new data to support this claim. In particular, we show that: 1) the vagal-level neural crest cells exhibit modest developmental bias; 2) there are differences in the migratory behavior between the anterior and the posterior vagal neural crest cells reminiscent of the cranial and the trunk neural crest, respectively; 3) the vagal neural crest cells take the dorsolateral pathway to the pharyngeal arches and the heart, but the ventral pathway to the peripheral nervous system and the gut. However, these pathways are not rigidly specified because of prior fate restriction. Understanding the molecular, cellular and behavioral differences between these three populations of neural crest cells will be of enormous assistance when trying to understand the evolution of the neck.  相似文献   

4.
In spontaneously atherosclerosis-susceptible White Carneau pigeons intimal cushions are noted consistently at the coeliac branch of aorta at birth. While these cushions do not progress into atherosclerotic lesions, the area across from the cushion (so called "lesion area") develop a classic atherosclerotic plaque by three years of age. In order to explain this regional aortic susceptibility to atherosclerosis, cholesterol and cholesteryl ester concentrations and prostaglandin biosynthesis in the two aortic regions were examined. It was found that the concentration of free and esterified cholesterol was higher in the intimal cushion area. Examination of the formation of various prostaglandins from C14-arachidonic acid indicates a striking increase in PGE2 synthesis in the lesion area with no difference in the formation of 6-keto PGF1 alpha (stable product of PGI2). These studies suggest that one of the earliest changes noted in the "lesion area" that differs from the intimal cushion is the enhanced formation of PGE2.  相似文献   

5.
This study characterized the biochemical properties of the rat diaphragm by measuring the activities of selected citric acid cycle and glycolytic enzymes. The diaphragm was removed from 10 female Sprague-Dawley rats (180 days old) and dissected into five discrete anatomic regions: crural (region 1), left posterior costal (region 2), left anterior costal (region 3), right anterior costal (region 4), and right posterior costal (region 5). Sections were assayed for total protein concentration and the activities of succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH). The SDH activity in the crural region was approximately 18% lower (P less than 0.05) than that in any costal region. Furthermore, protein concentration was significantly lower (P less than 0.05) in the crural region compared with all costal regions. In contrast, costal regions 2-5 did not significantly differ from each other in protein concentration or SDH activity. LDH activity did not differ significantly (P greater than 0.05) between regions. Finally, the LDH-to-SDH activity ratio was significantly higher (P less than 0.05) in the crural diaphragm compared with all costal regions. We conclude that the crural region of the rat diaphragm is significantly lower in oxidative capacity than all the costal regions. Investigators who use a rodent model to study diaphragmatic function and plasticity should consider the oxidative heterogeneity of the diaphragm when designing experiments.  相似文献   

6.
7.
8.
Regional differences in erythrocyte transit in normal lungs   总被引:3,自引:0,他引:3  
  相似文献   

9.
Regional differences in neutrophil margination in dog lungs   总被引:2,自引:0,他引:2  
We investigated the relationship between polymorphonuclear leukocyte (PMN) retention and erythrocyte (RBC) velocity in the lungs of mongrel dogs. Regional velocity was estimated by measuring regional RBC transit times and was correlated with the retention of PMN found in the same lung sample 10 min after the injection of a bolus of labeled cells. Data from the whole lung showed that the total number of cells marginated in the pulmonary vasculature was 2.4 times as great as the number present in the circulation and that this pool turned over at a rate of 1%/s. The regional data showed increased retention, indicating slower PMN turnover in the upper lung regions, which have longer transit times and therefore slower blood velocities than the RBC is attributed to a greater discrepancy between PMN and RBC is attributed to a greater discrepancy between PMN and capillary size and the fact that PMN are less deformable than RBC. The large number of capillary segments present in the lung allows neutrophils to move more slowly while RBC stream around them. We conclude that there are approximately 2.5 times as many PMNs marginated in the lung as there are in the total circulating blood volume of the dog and that the pulmonary marginated pool turns over at approximately 1%/s with slower turnover in the upper compared with the lower regions of the lung.  相似文献   

10.
The pressure swings under the costal (Pcos) and crural diaphragms (Pcru) and between the intestinal loops (Pint) were compared with the swings in gastric pressure (Pga) in 13 supine anesthetized dogs. Pcos, Pcru, and Pint were measured with air-filled latex balloons in eight dogs and saline-filled catheters in five. Pga was measured with an air-filled balloon in all dogs. During quiet breathing differences were often present, the directions of which were variable from animal to animal. During mechanical ventilation, all pressures increased, but both Pcos and Pcru increased more than Pga, whereas only a small change was observed in Pint. During bilateral stimulation of the costal diaphragm, Pcos invariably increased more than Pga and Pint, whereas almost no change was observed in Pcru. During bilateral stimulation of the crural diaphragm, Pcru invariably increased more than Pga, Pint, and Pcos. During abdominal muscle stimulation as during external abdominal compression, Pint always increased more than Pcos and Pcru. During lower rib cage compression, Pga, Pcos, and Pcru increased more than Pint. During sternocleidomastoid stimulation, all pressure swings were negative, but the change in Pint was always smaller than in Pcos, Pcru, or Pga. Inhomogeneities observed with balloons and saline-filled catheters were similar. After the abdomen was filled with 2 liters of saline all pressure swings became much more homogeneous.  相似文献   

11.
12.
13.
Experiments were performed to determine whether the transport properties of the ciliary epithelium vary over different regions. Rabbit iris-ciliary bodies were incubated under experimental or control conditions for 30 min before quick freezing, cryosectioning, dehydration and electron probe X-ray microanalysis. Cryosections were cut from three regions along the major axis of the iris-ciliary body, i.e., the anterior, middle and posterior (pars plicata) regions. In bicarbonate/CO2 solution, the epithelial cells of the anterior and middle regions contained more Cl and K than did those of the posterior region. These higher levels of Cl and K were reduced by the carbonic anhydrase inhibitor acetazolamide. Application of bumetanide, an inhibitor of the Na+-K+-2Cl cotransporter, resulted in significant increases in Cl and K in the anterior and middle regions but not in the posterior region. In bicarbonate-free solution, the ratio for K/Na contents was higher in the posterior than in the two more anterior regions; Na, K and Cl contents of epithelial cells in the three regions were otherwise similar. Cell composition did not differ significantly between the crests and valleys of the posterior region. The divergent responses to perturbation of epithelial transport in the different regions provide the first demonstration of functional heterogeneity along the major axis of the iris-ciliary body. The response to inhibition of carbonic anhydrase raises the possibility that the anterior aspect of the ciliary epithelium may be the major site of aqueous humor secretion. Received: 4 December 2000/Revised: 24 April 2001  相似文献   

14.
15.
Summary In order to observe glucose transport into the brain, 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (NBDG), a non-metabolizable and fluorescent glucose analogue, was injected intravenously into mice. After ascertaining that this glucose analogue is non-metabolizable in the brain, the NBDG contents in the blood and brain were measured quantitatively by spectrofluorimetry at 0, 0.5, 2, 5, 10 and 30 min after intravenous injection. The NBDG content in the blood decreased markedly with time, whereas in the brain it rapidly decreased, then gradually increased after 2 min. Glucose transport into the hippocampus was observed with a confocal laser scanning microscope. At 0.5 min, NBGD was seen to be highly concentrated on the vascular wall. Using the confocal mode, it was found that the fluorescence was unevenly distributed on the microvessel wall, suggesting local differences of glucose transport in the vascular wall. At 5 min, the fluoresent intensity of the vascular wall was markedly decreased, whereas relatively intense fluorescence was observed in the cerebral parenchyma of the stratum lacunosum-moleculare and stratum pyramidale of CA3. At 10 min, a weak fluoresence was diffusely distributed in the hippocampus. As to the localization of NBDG in the brain, capillary endothelium (luminal and abluminal membrane), basement membrane, and the feet of the astrocytes are discussed.  相似文献   

16.
17.
18.
We transplanted imaginal disks of Drosophila melanogaster from larvae of the second half of the third larval instar into prepupae. Disks from the youngest donors differentiated bristles of only the distal segments of the leg. These disks also produced unusually large areas of cuticle that had no bristles. Disks from older donors differentiated bristles of more proximal segments and the area of cuticle with no bristles was reduced. To account for the regional variation in these results, there must be regional differences among the prospective leg cells at some time during the period from the second half of the third larval instar to the end of adult bristle differentiation. We asked whether prospective distal cells were more advanced than prospective proximal cells during bristle differentiation. We estimated when bristle precursor cells undergo their final cell divisions by heavily irradiating prepupae and pupae. We assumed that cells that were insensitive to the radiation had completed their cell divisions. The distal segments were the first to have insensitive bristles. Most leg bristles became insensitive between 12 and 18 hr after pupariation. The tarsus had a larger proportion of its bristles insensitive than the femur at 15 hr after pupariation. We also investigated when bristle-forming cells begin elongating their bristle shafts. We used the length of bristle rudiments as an indicator of when elongation is initiated. At 35 hr after pupariation, bristle rudiments of distal segments were two to three times longer than bristle rudiments of proximal segments. We discuss how these intersegmental differences observed during bristle differentiation can account for the regional variation in response of discs transplanted into older hosts. However, we do not exclude the possibility that regional differences among cells of the leg tissue exist at stages earlier than the time of bristle differentiation.  相似文献   

19.

Background

Little is known about the influencing potential of specific characteristics on lung function in different populations. The aim of this analysis was to determine whether lung function determinants differ between subpopulations within Germany and whether prediction equations developed for one subpopulation are also adequate for another subpopulation.

Methods

Within three studies (KORA C, SHIP-I, ECRHS-I) in different areas of Germany 4059 adults performed lung function tests. The available data consisted of forced expiratory volume in one second, forced vital capacity and peak expiratory flow rate. For each study multivariate regression models were developed to predict lung function and Bland-Altman plots were established to evaluate the agreement between predicted and measured values.

Results

The final regression equations for FEV1 and FVC showed adjusted r-square values between 0.65 and 0.75, and for PEF they were between 0.46 and 0.61. In all studies gender, age, height and pack-years were significant determinants, each with a similar effect size. Regarding other predictors there were some, although not statistically significant, differences between the studies. Bland-Altman plots indicated that the regression models for each individual study adequately predict medium (i.e. normal) but not extremely high or low lung function values in the whole study population.

Conclusions

Simple models with gender, age and height explain a substantial part of lung function variance whereas further determinants add less than 5% to the total explained r-squared, at least for FEV1 and FVC. Thus, for different adult subpopulations of Germany one simple model for each lung function measures is still sufficient.  相似文献   

20.
Sensations evoked by thermal stimulation (temperature-related sensations) can be divided into two categories, "temperature sensation" and "thermal comfort." Although several studies have investigated regional differences in temperature sensation, less is known about the sensitivity differences in thermal comfort for the various body regions. In the present study, we examined regional differences in temperature-related sensations with special attention to thermal comfort. Healthy male subjects sitting in an environment of mild heat or cold were locally cooled or warmed with water-perfused stimulators. Areas stimulated were the face, chest, abdomen, and thigh. Temperature sensation and thermal comfort of the stimulated areas were reported by the subjects, as was whole body thermal comfort. During mild heat exposure, facial cooling was most comfortable and facial warming was most uncomfortable. On the other hand, during mild cold exposure, neither warming nor cooling of the face had a major effect. The chest and abdomen had characteristics opposite to those of the face. Local warming of the chest and abdomen did produce a strong comfort sensation during whole body cold exposure. The thermal comfort seen in this study suggests that if given the chance, humans would preferentially cool the head in the heat, and they would maintain the warmth of the trunk areas in the cold. The qualitative differences seen in thermal comfort for the various areas cannot be explained solely by the density or properties of the peripheral thermal receptors and thus must reflect processing mechanisms in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号