首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Frass deposition to soil is an important pathway by which herbivorous insects impact decomposition and soil nutrient availability. However, little is known about how frass quality influences ecosystem properties. Here, we examined the effects of frass quality on the decomposition process, soil nitrogen (N) availability, and plant growth, using frass of Mamestra brassicae (L.) that fed on fertilized or unfertilized Brassica rapa L. var. perviridis Bailey. The frass quality was largely dependent on the host plant quality. Frass excreted by larvae that fed on the fertilized plants had higher N than that of larvae that fed on the unfertilized plants. The decomposition rate of the frass did not differ between N-rich and N-poor frass, except during the early decomposition period. The inorganic N concentration decreased during decomposition in both frass types. However, difference in the initial inorganic N concentration led to different consequences regarding soil N availability. Furthermore, addition of frass to the soil differently influenced the growth of B. rapa plants depending on the frass quality: plant biomass was increased by N-rich frass addition but decreased by N-poor frass addition, compared to the biomass without frass addition. These results indicate that frass quality is an important factor in determining the impact of herbivorous insects on nutrient dynamics, and that frass positively or negatively influences soil N availability and plant growth, depending on its quality.  相似文献   

2.
Extensive green roofs substrates should meet a list of physicochemical and biochemical requirements to be used as a basis for plant growth: high water holding capacity, good aeration, low bulk density, and proper drainage are some of them. In recent years, the impact of different organic matter doses and the substrate depth on the subsequent plant growth have been deeply studied. By contrast, there are not many publications about the effect of the inorganic component of these substrates on plant development and C and N sequestration potential by the green roof system, and even more under semi-arid Mediterranean conditions. Four substrates were made by mixing the same compost, at 10% by volume, with different inorganic materials: CsB (compost, silica sand, and crushed bricks; 1:1:8), CB (compost and crushed bricks; 1:9), CSB (compost, clay-loam soil, and crushed bricks; 1:1:8), and CsS (compost, silica sand, and clay-loam soil; 1:1:8). These were placed, a depth of 10 cm, on “cultivation tables” in an experimental farm located in the SE of Spain. Two native species were sown in each substrate: Lotus creticus and Asteriscus maritimus. Physicochemical, nutritional, and biochemical properties of the substrates as well as the plant development were evaluated during a 10-month experiment. The CsB and CSB mixtures had good physicochemical properties (high porosity and acceptable water holding capacity) although the levels of C, N, and humic substances were higher in the soil-containing substrates than in the CB and CsB mixtures. The hydrolytic enzyme activity was also promoted in these mixtures. The plant growth pattern showed differences regarding the inorganic composition of the substrate; L. creticus had superior development in the CsB substrate and A. maritimus was able to grow in all tested substrate mixtures, although its cover was low, being a more versatile candidate to establish a green roof cover. The greatest C and N sequestration potential was achieved by the CsS mixture, reaching 1.06 kg TC m−2 of green roof substrate. Therefore, substrate composition impacts the growth of native plant species as well as the C and N sequestration by the green roof system.  相似文献   

3.
We studied the growth and photosynthesis of the hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil and the effects of soil N load, to determine the performance of this species as reforestation material in serpentine regions. We prepared 16 experimental plots (2 m × 4 m each), eight on serpentine and eight on brown forest soil, and planted one-year-old cutting seedlings of the hybrid larch F1 in each plot, in May 2007. Ammonium sulfate was supplied to half of the plots of each soil type in 2008 and 2009, at a load of 47 kg N ha−1 year−1. Although the growth and photosynthetic capacity of hybrid larch F1 seedlings in the serpentine soil were limited, the rate of growth in serpentine soil was greater than that of Sakhalin spruce (Picea glehnii) that is dominant species in serpentine regions. There was significant interaction between soil type and N load for the growth and photosynthetic parameters. The N load adversely affected growth and photosynthetic parameters in the serpentine soil, while improved them in brown forest soil. Although the growth rate of hybrid larch F1 without N loading showed high potential as an afforestation species in serpentine region, increasing deposition of N might be a threat to the growth and photosynthesis of the hybrid larch F1 in serpentine soil.  相似文献   

4.
We studied for two years the seasonal changes in plant available nitrate and ammonium nitrogen (N), nitrification, N-mineralization, microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP) in two forest and three cropland sites, derived from a tropical forest ecosystem of India. Results indicated that seasonal values of nitrate N, ammonium N and phosphate P ranged from 7.33–12.99, 5.1–10.22 and 4.0–7.8 μg g?1 in forest and 4.13–9.26, 9.35–14.46 and 2.8–5.8 μg g?1 in cropland ecosystems, respectively, with maximum values in summer and minimum in rainy seasons. Nitrification and N-mineralization values varied from 6–28 and 4–26 μg g?1 mo?1 in forest and 3–14 μg g?1 mo?1 and 4–17 μg g?1 mo?1 in cropland, with maximum values in rainy season and minimum in summer season.MBC, MBN MBP ranged from 393–753, 34–80 and 16–36 μg g?1 in forests and 186–414, 21–41 and 11–22 μg g?1 in croplands, being maximum in summer and minimum in rainy seasons. There was gradual increase in the values of inorganic N, nitrification, N-mineralization and MBC, MBN and MBP along the age of cropland. Analysis of variance indicated significant difference in the concentration of inorganic N, nitrification and N-mineralization and MBC, MBN and MBP due to sites and seasons.Cultivation caused decline in the mean annual organic C, N and P by 42%, 29% and 13%. The values of nitrate N were decreased by 23–38%, while ammonium N was increased by 39–74%. Nitrification and N-mineralization values were reduced by 39–63% and 40–60%, respectively. Microbial C, N and P were reduced by 44–54%, 41–50% and 28–44%, respectively. Nonetheless, the contribution of soil microbial biomass reflected in total N was enhanced from 4.76% in forest to 5.03% in cropland ecosystem. Enhancement of plant available ammonium-N and microbial contribution in total N are an indicator of natural conserving mechanism to check the nitrogen loss from the nutrient poor agro-ecosystem.  相似文献   

5.
The present work evaluated the synergistic effects of soil fertilization with rock P and K materials and co-inoculation with P and K-dissolving bacteria [PDB (Bacillus megaterium var. phosphaticum) and KDB (Bacillus mucilaginosus and B. subtilis)] on the improvement of P and K uptake, P and K availability and growth of maize plant grown under limited P and K soil conditions (calcareous soil). The experiment was establishment with eight treatments: without rock P and K materials or bacteria inoculation (control), rock P (RP), rock K (RK), RP + PDB, RK + KDB and R(P + K)+(P + K)DB. Under the same conditions of this study, co-inoculation of PDB and KDB in conjunction with direct application of rock P and K materials (R(P + K)) into the soil increased P and K availability and uptake, and the plant growth (shoot and root growth) of maize plants grown on P and K limited soils.  相似文献   

6.
Application of rhizospheric microbes to enhance the phytoremediation of organic pollutants has gained considerable attention recently due to their beneficial effects on the survival and growth of plants in contaminated soil sites. The present study was demonstrated to test the combined rhizoremediation potential of Staphylococcus cohnii subspecies urealyticus in the presence of tolerant plant Withania somnifera grown in lindane spiked soil. Withania was grown in garden soil spiked with 20 mg kg−1 of lindane and inoculated with 100 ml of microbial culture (8.1 × 106 CFU). Effect of microbial inoculation on plant growth, lindane uptake, microbial biomass carbon, dehydrogenase activity, residual lindane concentration and lindane dissipation percentage were analyzed. The microbial inoculation significantly enhances the growth and lindane uptake potential of test plant (p < 0.05). Furthermore, there was an enhanced dissipation of lindane observed in microbial inoculated soil than the dissipation rate in non-inoculated soil (p < 0.01) and the dissipation rate was positively correlated with the soil dehydrogenase activity and microbial biomass carbon (p < 0.05). The study concludes that the integrated use of tolerant plant species and rhizospheric microbial inoculation can enhance the dissipation of lindane, and have practical application for the in situ remediation of contaminated soils.  相似文献   

7.
Research into utilization of monosodium glutamate industrial wastewater (MSGW) as a plant nutrient source was undertaken. The physico-chemical and microbiological characteristics of MSGW were analyzed in detail. Effect of MSGW on early growth of Chinese cabbage (Brassica rapa L. cv. Pekinensis) and maize (Zea mays L. cv. Bright Jean) was tested by the seed germination bioassay. Subsequently, in a greenhouse pot experiment using the same plant species, effects of MSGW application rates on the plant biomass yield, nitrogen content and soil properties were analyzed. The MSGW was characterized by high levels of N (56.7 g l?1), organic C (344.6 g l?1), total solids (600 g l?1) and other minerals. At MSGW concentrations below 1%, germination indices for both the plant species were significantly (p < 0.01) higher than the control. Further, the greenhouse study results indicated significant increase in the plant biomass yield at MSGW application rates of 5000 and 7500 l ha?1. As the MSGW dose increased, the biomass yield decreased, decreasing the N-use efficiency. Maize showed significantly higher wastewater N-use efficiency compared to the Chinese cabbage. Although the total culturable bacterial and fungal counts in the raw MSGW were low, addition of MSGW to the soil increased the soil microbial activities and soil respiration. Soil organic C was also increased by the addition of MSGW, due to the presence of significant amounts of organic C in the wastewater. This preliminary study demonstrates that by proper management of the pH and optimization of application rate, MSGW can be utilized as a nutrient source for plant growth. Further long-term field studies to evaluate the environmental impact of MSGW usage in agriculture are being designed to reduce the environmental risks associated with the reuse of this underutilized wastewater in the agriculture.  相似文献   

8.
High soil temperature is a critical factor limiting growth of cool-season grasses. This study was designed to examine changes in water, nutritional, and hormonal status in response to high soil temperature for creeping bentgrass (Agrostis stoloniferavar. palustris) and to compare the sensitivity of those parameters to high soil temperatures. Plants of ‘Penncross’ were exposed to 35 °C soil temperature (heat stress) or 20 °C (control) in water baths while air temperature was maintained at 20 °C in growth chambers. Turfgrass quality, shoot growth rate, and root biomass decreased below the control levels at 15, 15, and 10 days of heat stress, respectively, while root mortality increased above the control level at 5 days of heat stress. Relative water content (RWC) of leaves decreased below the control level at 15 days of heat treatment. Root N content increased while P and K content did not change over time at 35 °C. Shoot N, P, and K content decreased below the control level at 15, 15, and 10 days of heat stress, respectively. Root abscisic acid (ABA) content decreased below the control level at 10 days while shoot ABA content increased above the control level at 5 days. The content of cytokinins (zeatin (Z) and zeatin riboside (ZR), dihydrogen zeatin riboside (DHZR), and isopentenyl adenosine (iPA)) decreased below their respective control levels as early as 5 days of heat stress for roots and 10 days for shoots. The decline in cytokinin content was also more dramatic than changes in other parameters. Our results suggested that cytokinin was most sensitive to high soil temperature among parameters examined, suggesting that changes in cytokinins could serve as an early stress indicator for plant responses to high soil temperature; however, decreased water, nutrient (N, P, and K), and cytokinin content, and increased ABA could all contribute to the decline in shoot and root growth for creeping bentgrass exposed to high soil temperatures.  相似文献   

9.
The addition of carbon (C) to the soil as sucrose has been suggested as a countermeasure to reduce plant available nitrogen (N) and increase the competitive advantage of slower growing native perennial species over faster growing annual species. To make this approach a successful restoration tool, C addition must induce the resident soil bacteria and fungi to immobilize plant available soil nutrients. In this study, both the efficacy of sucrose applications as a restoration aid and their dependence on soil microbial activity were examined in field and greenhouse trials. Carbon as sucrose (200 g m 2) was added to normal and sterilized soils containing various combinations of native perennial and annual species. Their effects on soil N levels, as well as on the photosynthetic efficiency, growth and N uptake of the introduced native species, were measured. Diminished foliar chlorophyll contents, effective quantum yields (ΔF/Fm′) of Photosystem II (PSII) and dry mass accumulation in response to sucrose applications were observed in both the annual and perennial introduced species, but were not reflected in corresponding reductions in soil N levels. These sucrose-induced inhibitory effects, as well as diminished plant N uptake, were more pronounced in normal than sterilized soils. This implied a bacterial component immobilizing soil N essential for plant photosynthesis and growth. However, this premise was partly contradicted by the unaltered total bacterial numbers following sucrose application in the normal soils, although coliform numbers did increase with sucrose application in these soils. These findings point to a likely abiotic mechanism of sucrose-induced inhibition of photosynthesis and growth in introduced native plants, which renders sucrose application ineffectual as a restoration aid in transformed lowland fynbos ecosystems.  相似文献   

10.
《Acta Oecologica》2007,31(2):216-222
We investigated whether agri-environmental incentive payments help to maintain biodiversity. We studied the effect of agricultural management intensity on vascular plant species richness and plant assemblages of mountain meadows in Switzerland. Other factors such as slope, altitude or accessibility (distance from farmyard) were also taken into account. Vegetation sampling was conducted at 69 sites representing five different management types, differing with respect to nutrient input and soil moisture: (i) dry extensive meadows; (ii) extensive meadows; (iii) dry low-intensive meadows; (iv) low-intensive meadows; (v) intensive meadows. There was a significant negative relationship between plant species richness and management intensity: The mean number of plant species per management type declined markedly when management intensity increased, although dry sites harboured slightly more species regardless of management intensity (dry extensive > dry low intensive > extensive > low intensive >> intensive meadows). Species richness was clearly affected by management intensity, but not so by slope, altitude or accessibility. There was a gradual shift in plant assemblages among management types with only intensive meadows differing from the other four types of differently managed meadows. We therefore found, in contrast to many studies done in the European lowlands, positive effects of incentive payments on plant species richness.  相似文献   

11.
The aim of this study is to determine the short-term effects of fire on nitrogen and phosphorus soil concentration in heathland sites dominated by Calluna vulgaris in the Cantabrian Mountain range (NW Spain). Three C. vulgaris heathlands sites (San Isidro, Riopinos I and Riopinos II) were selected. In June 2005, one plot (20 m × 20 m) per site was subjected to an experimental fire and the other was used as a control. Immediately after the fire, ten ash samples and ten soil samples (at a depth of 5 cm) were collected and thoroughly mixed. Soil moisture, temperature, total N, NH4+, NO3?, total P, available P and pH were determined in each sample. The quantity of ashes deposited was 300 g/m2, with a pH of 9, low N content but higher P concentrations. Significant differences in temperature and soil moisture were detected between the fire-treated and control plots. No significant differences for soil pH, total and available P, total N and NO3? concentration were found between the treatments. However, the concentration of ammoniacal-N indicated a significant increase 11 months post-fire and was produced by the changes in environmental soil conditions after the fire. Our results show that low intensity fires do not modify the concentration of N and P in the soil. However, post-fire conditions favour an increase in ammoniacal-N one year later.  相似文献   

12.
As global climate is warming and the nitrogen cycle accelerates, plants are likely to respond not only by shifting community composition, but also by adjusting traits such as tissue chemistry. We subjected a widespread wetland plant, Phragmites australis, to increased nitrate supply and elevated temperature in enclosures that were established in a littoral permanently submerged freshwater marsh. The nitrogen (N) and phosphorus (P) concentrations in green leaves ranged from 11.4 to 13.8 mg N and from 1.5 to 2.0 mg P g−1 dry mass. While the N concentration changed little in brown litter, the P concentration decreased to 0.53–0.65 mg P g−1 litter dry mass. Neither experimental warming of the water and sediment surface, nor nitrate enrichment during the growing season affected nitrogen or phosphorus concentrations in green leaves. Concentrations of the two major structural carbon compounds in plant litter, cellulose and lignin, were also unaffected, ranging from 32.1 to 34.2% of dry mass for cellulose and from 16.3 to 17.7% of dry mass for lignin. Warming, however, significantly increased the nitrogen concentration of fully brown leaf litter. Thus, temperature appears to be more important than the supply of dissolved N in the water, especially in affecting leaf litter N concentrations in P. australis, even when only water but not air temperature is increased. This result may have implications for decomposition processes and decomposer food webs, which both depend on the quality of plant litter.  相似文献   

13.
Root-induced nitrogen mineralisation: A theoretical analysis   总被引:1,自引:0,他引:1  
The possibility is examined that carbon (C) released into the soil from a root could enhance the availability of inorganic nitrogen (N) to plants by stimulating microbial activity. The release of soluble C compounds from roots is assumed to occur by one of two general processes: cortical cell death or exudation from intact cells. On the basis of several assumptions chosen to allow maximal amounts of N mineralisation to be calculated, greater amounts of net N mineralisation are theoretically possible at realistic soil C:N ratios of bacteria are grazed by predators such as protozoa, than if bacteria alone are active. More N is mineralised when the substrate released from the root has a high C:N ratio (as in cell death) than when it is relatively N-rich. The amounts of N that a root might realistically cause to be mineralised are unlikely to account entirely for high nitrate inflow rates that have been measured experimentally. However there are circumstances in which the loss of C from roots is essential if any N is to be mineralised and obtained by plants.  相似文献   

14.
The responses of soil-atmosphere carbon (C) exchange fluxes to growing atmospheric nitrogen (N) deposition are controversial, leading to large uncertainty in the estimated C sink of global forest ecosystems experiencing substantial N inputs. However, it is challenging to quantify critical load of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha−1 yr−1) were conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0–10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0–10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥60 kg N ha−1 yr−1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha−1 yr−1 significantly stimulated, whereas high rate of N addition (140 kg N ha−1 yr−1) significantly inhibited soil CO2 emission and CH4 uptake. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical level of N in terms of soil C fluxes should be considered in the ecological process models and ecosystem management.  相似文献   

15.
Flooding periods can be one of the most important factors influencing nitrogen (N) biogeochemical processes in wetlands ecosystem. We conducted a field study using in situ incubation method to investigate the seasonal dynamics of soil net N mineralization in three coastal salt marshes (Suaeda salsa) with different flooding periods (i.e., short-term (STF), seasonal (SF), and tidal (TF) flooding wetland) in the Yellow River Delta. Selected soil inorganic N pools (ammonium, nitrate and inorganic N) and N transformation (mineralization, nitrification and ammonification) rates in the top 0–10 cm soils were repeatedly quantified from April to October. Clear seasonal patterns in inorganic N pools and transformation rates were observed in accord with the seasonal variations of temperature and moisture. Generally, higher levels of soil inorganic nitrogen, ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) occurred in the early-growing season (April), and NH4+-N contents got a small accumulative peak in midsummer (September). The lower rates (negative) of net mineralization (Rmin), nitrification (Rnit) and ammonification (Ramm) were observed in the early-growing season (April–June) and fall (September–October), whereas higher values (positive) in midsummer (August–September). Flooding had a significant influence on inorganic N pools (except for NH4+-N) and transformation rates (p < 0.05). Rmin values in SF wetland were significantly higher in the August-September period than those in other incubation periods. Rnit values in TF wetland exhibited a small variation and the highest value occured in the June–August period. The results of principal component analysis showed that soil samples were clearly divided into two groups before and after flow-sediment regulation. After flooding events, the Rmin and Ramm values generally increased in the three wetlands, whereas a significant decrease in Rnit values was observed in SF wetland (p < 0.05), thus the differences in NO3-N among these wetlands were eliminated. These results suggested that seasonal variations in temperature and moisture are important factors influencing inorganic N pools and transformation rates.  相似文献   

16.
Information on carbon (C) dynamics and allocation in plant–soil system is essential for understanding the terrestrial C cycle. Using a 13C pulse-labeling chamber (1 m × 1 m) technique, we carried out three separate experiments in an Inner Mongolia temperate steppe (Leymus chinensisStipa grandisCleistogenes squarrosa). The first experiment determined mainly the temporal variation of δ13C (‰) signatures over the chase period of 6–27 July in a fenced site. The second experiment compared the dynamics and allocation of recently assimilated C over 10–20 August between a fenced site and a grazed site. The third experiment measured the effect of N application on assimilated C fluxes over 26 August–4 September in a fenced site. The above- and below-ground partitionings of labeled 13C were found to vary with site, growth stage and management state. The labeled 13C in shoots was maximal during the first day after labeling and then declined, whereas it roughly increased in roots. There was the absence of significant variation in soil δ13C. In the fenced site, the labeled 13C partitioning to the shoots accounted for 24.4, 16.8 and 11.1% of initial additions by 10 days after the labelings on 6 July, 10 August and 26 August 2003, respectively. However, the percentage of recently assimilated C partitioning to the roots, about 22–23%, was almost unchanged throughout growing stages. In the grazed site, the labeled 13C of about 50% was respired, 13% was remained in the shoots, and 37% was translated to the roots; the corresponding percentages, for the fenced site with N, were approximately 60, 20 and 18%, respectively. This study suggests that carbon was rapidly and substantially cycled in the Inner Mongolia temperate steppe by means of photosynthesis and respirations. It appears that the grazing and the N application had significant effects on the dynamics and allocation of recently photo-assimilated C in the plant–soil system.  相似文献   

17.
Tarek M. Galal  Hanaa S. Shehata 《Flora》2013,208(10-12):556-561
The present study aimed to evaluate the morphological characteristics and biomass of Desmostachya bipinnata and their relation to the environmental variables in three main habitats (canal banks, railway and roadside shoulders) where it is found in Egypt. In addition, the ability of this plant is evaluated to accumulate nutrients and heavy metals in its aboveground shoots. Twenty five quadrats (1 m × 1 m per quadrat) were selected along five sites representing the different habitats of D. bipinnata for this study. The aboveground shoots displayed considerable morphological variations, differing in the different habitats. The above ground biomass, number of spikes and leaves, rachis length and diameter, leaf length, width and area, leaf sheath length, and spike length and diameter were in the order: road sides > canal banks > railway shoulders. A regression equation: biomass = (67.37 × density) + 108.2, was used to estimate the shoot biomass from the plant growth density. Metal uptake capability from soil to grass is in the order Fe > Zn > Cu > Mn, and all of them are in safe concentration ranges. These heavy metals had a transfer factor more than unity, which indicates that D. bipinnata is a powerful accumulator for heavy metals. In addition, the plant shoots exhibit high accumulation of inorganic and organic nutrients.  相似文献   

18.
Non-structural carbohydrates (NSCs), e.g., glucose and starch, play important roles in metabolic processes of plants and represent important functional traits in plant's adaptation to external environment. To explore the variations in leaf NSCs among species and communities at a large scale and their influencing factors, we investigated the contents of leaf NSCs among 890 plant species in nine typical forests along the north–south transect of eastern China. The results showed that the contents of leaf soluble sugars, starch, and NSCs (sugars + starch) were highly variable among different plant species on the site scale, and their mean values for the 890 plant species were 45.7 mg g−1, 47.5 mg g−1, and 93.2 mg g−1, respectively. All three metrics varied markedly across plant functional groups in the order of trees < shrubs < herbs. Weak latitudinal patterns of leaf soluble sugars, starch, and NSCs were observed from tropical to cold-temperate forests at the levels of species and plant functional groups. The contents of leaf soluble sugars, starch, and NSCs decreased with increasing temperature and precipitation which supports the growth limitation hypothesis at a large scale. In trees, leaf soluble sugars, starch, and NSCs increased with increasing photosynthetic active radiation (PAR); and were positively correlated with specific leaf area (SLA). The spatial patterns of leaf NSCs in forests along the north–south transect of eastern China and their relationships with temperature, precipitation, PAR, and SLA illustrate an important adaptation of plant communities to environmental changes at the continental scale.  相似文献   

19.
We present a network of thirteen annual ring-width chronologies from high elevation whitebark pine (Pinus albicaulis Engelm.) sites in the western Canadian Cordillera in order to assess the dendroclimatic potential of this long-lived tree species. The temperature signal within the chronologies is complex and strongly influenced by diverging trends in the summer temperature and ring-width records from across the region. A first differences transformation of the tree-ring and temperature records illustrates a loss of frequency coherence in growth response to summer temperatures following reduced radial growth in the 1950s. Prior to reduced growth, we note a positive association with summer temperatures for both first differenced (rd = 0.60) and traditional (r = 0.50) records. Following reduced growth, the association at first differences is maintained (rd = 0.49) whereas there is a change in the lower frequency component of tree growth response to summer temperatures (r = ?0.34). We suggest the cause of this reduced temperature sensitivity is related to the interaction between diurnal temperature and cloud cover patterns, the hydrological regime of snowpack, and site conditions which have been amenable to the initiation of moisture stress during the latter half of the 20th century. Reduced radial growth is coincident with the arrival of white pine blister rust (Cronatium ribicola J.C. Fisch. ex Raben) into the study region which suggests this infestation may be related to the observed reduction in radial growth. Whitebark pine has considerable potential for the field of dendroclimatology. Unfortunately, the decline of the species due to the combined effects of climate change, white pine blister rust, mountain pine beetle (Dendroctonus ponderosae Hopk.), and forest fire exclusion practices indicate this potential may remain unfulfilled.  相似文献   

20.
Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m−1), in low saline soil (EC = 5 dS m−1), and in a high saline soil (EC = 10 dS m−1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (−AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号