首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNA plays an important role in cell differentiation, proliferation and cell death. The current study found that miRNA-146a was up-regulated in human bronchial epithelial cells (HBECs) in response to stimulation by TGF-ß1 plus cytomix (a mixture of IL-1ß, IFN-γ and TNF-α). TGF-ß1 plus cytomix (TCM) induced apoptosis in HBECs (3.4 ± 0.6% of control vs 83.1 ± 4.0% of TCM treated cells, p < 0.01), and this was significantly blocked by the miRNA-146a mimic (8.8 ± 1.5%, p < 0.01). In contrast, a miRNA-146a inhibitor had only a modest effect on cell survival but appeared to augment the induction of epithelial-mesenchymal transition (EMT) in response to the cytokines. The MicroRNA-146a mimic appears to modulate HBEC survival through a mechanism of up-regulating Bcl-XL and STAT3 phosphorylation, and by this mechanism it could contribute to tissue repair and remodeling.  相似文献   

2.
Ebp1 and NPM/B23 are essential for cell proliferation and survival. Ebp1 possesses p42 and p48 isoforms. Whereas p42 exclusively resides in the cytoplasm, p48 localizes in both the cytoplasm and the nucleolus. Here, we show that Ebp1 forms a complex with B23, and this complex plays a critical role in cell proliferation and survival. p42 specifically associates with B23 upon epidermal growth factor stimulation, while p48 constantly binds B23. Moreover, Ser360 phosphorylation in p42, but not p48, is critical for the interaction. p48 constitutively binds B23 in the nucleolus, for which B23 Lys263 sumoylation is indispensable. By contrast, p42 selectively binds unsumoylated B23 mutants. Interestingly, B23 K263R, an unsumoylated mutant, triggers p42 nuclear translocation and interacts with it in the nucleus even in the absence of epidermal growth factor. In contrast, the nucleolar residency of p48 is abolished in B23 K263R cells. During the cell cycle, p42 selectively colocalizes with B23 in the mitotic cells, correlating with its phosphorylation status in mitosis. Knocking down of B23 or Ebp1 substantially decreases ribosome biogenesis and cell survival. Thus, B23 distinctively binds Ebp1 isoforms and regulates cell proliferation and survival through p42 and p48, respectively.  相似文献   

3.
4.
5.
Liu HJ  Tan YR  Li ML  Liu C  Xiang Y  Qin XQ 《PloS one》2011,6(8):e23072
Bombesin receptor subtype 3 (BRS-3), the orphan bombesin receptor, may play a role in the regulation of stress responses in lung and airway epithelia. Bombesin receptor activated protein (BRAP )is a novel protein we found in our previous study which interacts with BRS-3. This study was designed to observe the subcellular location and wound repair function of BRAP in human bronchial epithelial cells (HBECs). BRAP ORF was amplified by RT-PCR and ligated to pEGFP-C1 vector, and then the recombinant plasmid pEGFP-C1-BRAP was transfected into Hela cells. The location of BRAP protein was observed by laser confocal microscope, and the expression of it was analyzed by Western-blot. At the same time,we built the recombinant plasmid pcDNA3.1(+)-BRAP, transfected it into HBECs and observed its impact on cell cycle and wound repair of HBECs. The results showed that BRAP locates in membrane and cytoplasm and increases significantly in transfected cells. Flow cytometry results demonstrated that the recombinant plasmid increases S phase plus G2 phase of cell cycle by 25%. Microscopic video analysis system showed that the repair index of wounded HBECs increases by 20% through stable expression of BRAP. The present study demonstrated that BRAP locates in the membrane and cytoplasm, suggesting that this protein is a cytoplasm protein, which promotes cell cycle and wound repair of HBECs.  相似文献   

6.
Cartilage-derived growth factor (CDGF), a cationic polypeptide of approximately 18,000 mol wt, was prepared from bovine articular cartilage; other sources were bovine and human scapular and costal cartilage. Previous studies have shown that CDGF stimulates the proliferation of cultured mouse fibroblasts as well as chondrocytes and endothelial cells from various sources. In this study, CDGF was shown to stimulate dose-dependently the accumulation of DNA and collagen by rat embryo fibroblasts and a population of fibroblasts derived from granulation tissue. CDGF also stimulated the proliferation of cultured bovine capillary endothelial cells dose-dependently. To evaluate the effects of CDGF in vivo, we implanted polyvinyl alcohol sponges subcutaneously in rats. 6 d postimplantation, sponges were injected with 300 micrograms of partially purified CDGF, a dose which takes into account the cell numbers in the sponges as compared with cell cultures. CDGF rapidly disappeared from the sponges and only approximately 10% of the initial dose was present at 4 h. Despite its transient presence, CDGF caused a relative increase in sponge DNA content of 2.6-fold at 48 h and 2.4-fold at 72 h. We repeated the sponge experiment by using 500-ng injections of CDGF purified to near homogeneity by heparin-Sepharose chromatography. Purified CDGF caused significant increases in sponge collagen, protein, and DNA content at 48 and 72 h after a single injection. The effects of CDGF were abolished by heat and unaffected by reduction of disulfide linkages. Morphologically, CDGF did not evoke an inflammatory response, and its effect on proliferating endothelial cells and fibroblasts was, therefore, probably direct. However, increases in DNA content of sponges could not be fully accounted for by increased DNA synthesis, which suggests that recruitment may be an important component of the in vivo response. Taken together, the effects of CDGF on cultured cells and granulation tissue suggest that the sustained presence of CDGF in vivo may greatly enhance its effects upon wound repair.  相似文献   

7.
8.
9.
To test the effect of endotoxin on bronchial epithelial cells (BEC), BEC were isolated from bovine lungs and cultured in the presence of bacterial endotoxin. The BEC culture supernatant fluids were harvested, and neutrophil chemotactic activity (NCA) was determined with a blindwell chamber technique; cytotoxicity determined by lactate dehydrogenase release and BEC proliferation determined by Coulter counting. Endotoxin caused a dose- and time-dependent release of NCA from BEC cultures compared with media alone (82.3 +/- 8.1 vs 12.0 +/- 3.1 cells/high power field, p less than 0.001). To further characterize this activity, reverse phase HPLC analysis of release eicosanoid metabolites after [3H]arachidonic acid incorporation was performed. Endotoxin stimulated the release of the neutrophil chemoattractants, leukotriene B4 and 12-hydroxyeicosatetraenoic acids. Endotoxin also resulted in a dose and time dependent release of lactate dehydrogenase (42.9 +/- 4.2 vs 20.2 +/- 2.2 U/liter, p less than 0.001) although higher doses were required to cause cytotoxicity than to stimulate chemotaxis. Finally, endotoxin resulted in a dose dependent inhibition of BEC proliferation (176 x 10(3) +/- 16 x 10(3) vs 1,080 x 10(3) +/- 38 x 10(3) cells/ml measured at day 14, p less than 0.001). These data suggest that bacterial release of endotoxin may contribute to the pathophysiologic changes observed in bronchial inflammation by stimulating BEC to release NCA, denuding airway epithelium by causing cytotoxicity of BEC, and inhibiting epithelial repair by inhibiting BEC proliferation.  相似文献   

10.
At present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.Subject terms: Cancer, Diseases  相似文献   

11.
12.
A myriad of predicted proteins have been described based upon nucleic acid sequences but the existence of these structures has not been confirmed at the protein level. The aim of the study was therefore to show expression of hypothetical proteins in several cell lines and to provide the analytical basis for their identification and characterisation. We used two-dimensional gel electrophoresis with in-gel digestion of high protein spots and subsequent MALDI-TOF analysis of cell lysates from human amnion, lymphocyte, bronchial epithelial and kidney cell lines. A pI range from 3 to 10 was selected and second dimension was run using 9-16% gradient gels. A series of structures that have not been described before at the protein level were identified in several cell lines and were assigned to major enzyme systems including proteolysis (proteases, peptidases, ubiquitin), intermediary metabolism and oxidoreductases. We conclude that the proteomic approach used serves as a suitable tool to verify the existence of predicted/hypothetical proteins. The herein identified enzymes may contribute to several pathways/cascades in the human organism. Furthermore, analytical data given are of major relevance as pIs, a prerequisite to find proteins in a map, cannot be predicted from nucleic acid sequences.  相似文献   

13.
14.
We have isolated the full-length sequence for a unique human kinase, designated TTK. TTK was initially identified by screening of a T cell expression library with anti-phosphotyrosine antibodies. The kinases most closely related to TTK are the SPK1 serine, threonine and tyrosine kinase, the Pim1, PBS2, and CDC2 serine/threonine kinases, and the TIK kinase which was also identified through screening of an expression library with anti-phosphotyrosine antibodies. However, the relationships are distant with less than 25% identity. Nevertheless, TTK is highly conserved throughout phylogeny with hybridizing sequences being detected in mammals, fish, and yeast. TTK mRNA is present at relatively high levels in testis and thymus, tissues which contain a large number of proliferating cells, but is not detected in most other benign tissues. Freshly isolated cells from most malignant tumors assessed expressed TTK mRNA. As well, all rapidly proliferating cell lines tested expressed TTK mRNA. Escherichia coli expressing the complete kinase domain of TTK contain markedly elevated levels of phosphoserine and phosphothreonine as well as slightly increased levels of phosphotyrosine. Taken together, these findings suggest that expression of TTK, a previously unidentified member of the family of kinases which can phosphorylate serine, threonine, and tyrosine hydroxyamino acids, is associated with cell proliferation.  相似文献   

15.
At an unbelievable pace, recent evidence has emerged that demonstrates the importance of a programmed form of necrosis (necroptosis) in physiology, pathophysiology and embryonic development. It is clear that the understanding of the intracellular control of necroptosis as compared to caspase-dependent apoptosis is of paramount importance. Tumorigenesis, immune surveillance of cancer and pathogen-induced disease, to name only a few, appear to be affected by the mode of cell death in vivo. Here, we discuss the Ripoptosome, a newly defined 2 MDa intracellular signalling complex that can be formed upon genotoxic stress or loss of inhibitor-of apoptosis proteins (IAPs). The Ripoptosome is a signaling platform that can switch modes between apoptotic and necroptotic cell death. In this report, we extend our recent studies and further the notion that the stoichiometric balance between RIP1 and cIAPs is critical for Ripoptosome formation. Furthermore, we demonstrate the critical relevance of the balance of expression levels of short (cFLIPS) or viral (vFLIP) forms of FLIP and RIP3 kinase for the spontaneous execution of necroptosis whenever cIAPs are absent in the cells. Our study thus supports and extends the intriguing role of the Ripoptosome for the regulation of apoptosis and necroptosis.  相似文献   

16.
After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveolar type II (ATII) cells and found that CS altered the balance between proliferation and cell death. We measured cell migration, size, and density; intercellular gap formation; cell number, proliferation, and apoptosis; cytoskeletal organization; and focal adhesions in response to scratch wounding followed by CS for up to 24 h. Under static conditions, wounds were closed by 24 h, but repair was inhibited by CS. Wounding stimulated cell motility and proliferation, actin and vinculin redistribution, and focal adhesion formation at the wound edge, while CS impeded cell spreading, initiated apoptosis, stimulated cytoskeletal reorganization, and attenuated focal adhesion formation. CS also caused significant intercellular gap formation compared with static cells. Our results suggest that CS alters several mechanisms of epithelial repair and that an imbalance occurs between cell death and proliferation that must be overcome to restore the epithelial barrier.  相似文献   

17.
《The Journal of cell biology》1995,129(6):1491-1507
We describe the dynamic intracellular localization of Drosophila Pendulin and its role in the control of cell proliferation. Pendulin is a new member of a superfamily of proteins which contains Armadillo (Arm) repeats and displays extensive sequence similarities with the Srp1 protein from yeast, with RAG-1 interacting proteins from humans, and with the importin protein from Xenopus. Almost the entire polypeptide chain of Pendulin is composed of degenerate tandem repeats of approximately 42 amino acids each. A short NH2-terminal domain contains adjacent consensus sequences for nuclear localization and cdc2 kinase phosphorylation. The subcellular distribution of Pendulin is dependent on the phase of cell cycle. During interphase, Pendulin protein is exclusively found in the cytoplasm of embryonic cells. At the transition between G2 and M-phase, Pendulin rapidly translocates into the nuclei where it is distributed throughout the nucleoplasm and the areas around the chromosomes. In the larval CNS, Pendulin is predominantly expressed in the dividing neuroblasts, where it undergoes the same cell cycle-dependent redistribution as in embryos. Pendulin is encoded by the oho31 locus and is expressed both maternally and zygotically. We describe the phenotypes of recessive lethal mutations in the oho31 gene that result in a massive decrease or loss of zygotic Pendulin expression. Hematopoietic cells of mutant larvae overproliferate and form melanotic tumors, suggesting that Pendulin normally acts as a blood cell tumor suppressor. In contrast, growth and proliferation in imaginal tissues are reduced and irregular, resulting in abnormal development of imaginal discs and the CNS of the larvae. This phenotype shows that Pendulin is required for normal growth regulation. Based on the structure of the protein, we propose that Pendulin may serve as an adaptor molecule to form complexes with other proteins. The sequence similarity with importin indicates that Pendulin may play a role in the nuclear import of karyophilic proteins and some of these may be required for the normal transmission and function of proliferative signals in the cells.  相似文献   

18.
Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. In our previous study, GGA was shown to inhibit ovarian cancer invasion by attenuating Rho activation [K. Hashimoto, K. Morishige, K. Sawada, M. Tahara, S. Shimizu, M. Sakata, K. Tasaka, Y. Murata, Geranylgeranylacetone inhibits lysophosphatidic acid-induced invasion of human ovarian carcinoma cells in vitro. Cancer 103 (2005) 1529-1536.]. In the present study, GGA treatment inhibited ovarian cancer progression in vitro and suppressed the tumor growth and ascites in the in vivo ovarian cancer model. In vitro analysis, treatment of cancer cells by GGA resulted in the inhibition of cancer cell proliferation, the inactivation of Ras, and the suppression of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK). In conclusion, this is the first report that GGA inhibited ovarian cancer progression and the anti-tumor effect by GGA is, at least in part, derived not only from the suppression of Rho activation but also Ras-MAPK activation.  相似文献   

19.
Benzo[a]pyrene (BaP) is a ubiquitously distributed environmental pollutant that induces deoxyribonucleic acid (DNA) damage. The inducible heat shock protein (HspA1A) can function as a molecular chaperone; however, its role in DNA repair remains largely unknown. In the present study, human bronchial epithelial cells (16HBE) stably transfected with plasmids carrying HspA1A gene or shRNAs against HspA1A were treated with BaP. DNA damage levels of the cells were evaluated by comet assay. Results suggest that HspA1A could protect cells against DNA damage and facilitate the decrease of DNA damage levels during the first 2 h of DNA repair. DNA repair capacity (DRC) of Benzo(a)pyrene diol epoxide (BPDE)-DNA adducts was evaluated by host cell reactivation assay in the stable 16HBE cells transfected with luciferase reporter vector PCMVluc pretreated with BPDE. Compared with control cells, cells overexpressing HspA1A showed higher DRC (p < 0.01 at 10 μM BPDE and p < 0.05 at 20 μM BPDE, respectively), while knockdown of HspA1A inhibited DNA repair (p < 0.05 at 10 μM BPDE). Moreover, casein kinase 2 (CK2) was shown to interact with HspA1A by mass spectrometry and co-immunoprecipitation assays. The two proteins were co-localized in the cell nucleus and perinuclear region during DNA repair, and were identified by confocal laser scanning microscope. In addition, cells overexpressing HspA1A showed an increased CK2 activity after BaP treatment compared with control cells (p < 0.01). Our results suggest that HspA1A facilitates DNA repair after BaP treatment. HspA1A also interacts with CK2 and enhances the kinase activities of CK2 during DNA repair.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-013-0454-7) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号