首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute studies suggest that adiponectin may reduce sympathetic activity and blood pressure (BP) via actions on the central nervous system (CNS). However, the chronic effects of adiponectin on energy expenditure and cardiovascular function are still poorly understood. We tested if chronic intracerebroventricular (ICV) infusion of adiponectin (1 or 7μg/day) in Sprague-Dawley rats fed a high fat diet (HFD) for 8 weeks and at the high dose (7μg/day) in spontaneously hypertensive rats (SHRs), a hypertensive model associated with sympathetic overactivity, evoked chronic reductions in BP and heart rate (HR). We also determined if chronic ICV adiponectin infusion alters appetite, whole body oxygen consumption (VO(2)), and insulin and leptin levels. Neither dose of adiponectin infused for 7 days significantly altered BP or HR in the HFD group (115±2 to 112±2mmHg and 384±6 to 379±6bpm at 1μg/day; 109±3 to 111±3mmHg and 366±5 and 367±5bpm at 7μg/day). The higher dose slightly reduced food intake (14±1 to 11±1g/day), whereas VO(2), insulin and leptin levels were not affected by the treatment. In SHRs, ICV adiponectin infusion reduced appetite (22±2 to 12±2g/day) and insulin levels (~55%), but did not alter BP (162±4 to 164±3mmHg) or HR (312±5 to 322±8bpm). These results suggest that adiponectin, acting via its direct actions on the CNS, has a small effect to reduce appetite and insulin levels, but it has no long-term action to reduce BP or HR, or to alter whole body metabolic rate.  相似文献   

2.
Continuous inutero and postpartum exposure of SH and WKY rats to naloxone results in a significant increase in their systolic blood pressure relative to respective control animals. After six weeks of age, however, naloxone was no longer effective in sustaining this increase in blood pressure. Chronic exposure to naloxone beginning at three weeks of age failed to produce any significant differences in blood pressure between treated and control animals. Although naloxone has been shown to elevate blood pressure in hypotensive states, this report represents the first example of an increase produced by the narcotic antagonist in the normotensive state.  相似文献   

3.
Cardiovascular effects of subcutaneous administration of synthetic alpha-lactorphin, a tetrapeptide (Tyr-Gly-Leu-Phe) originally derived from milk alpha-lactalbumin, were studied in conscious spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY) with continuous radiotelemetric monitoring. Alpha-lactorphin dose-dependently lowered blood pressure (BP) without affecting heart rate in SHR and WKY. The lowest dose which reduced BP was 10 microg/kg, and the maximal reductions in systolic and diastolic BP (by 23+/-4 and 17+/-4 mm Hg, respectively) were observed at 100 microg/kg dose in SHR. No further reductions were obtained at a higher dose of 1 mg/kg. There were no significant differences in the BP responses to alpha-lactorphin between SHR and WKY. Naloxone (1 and 3 mg/kg s.c.), a specific opioid receptor antagonist, abolished the alpha-lactorphin-induced reduction in BP and reversed it into a pressor response, which provides evidence for an involvement of opioid receptors in the depressor action of the tetrapeptide.  相似文献   

4.
Vitamin E treatment was found to lower blood pressure, and increase membrane fluidity in rats. The objectives of this study were to investigate the effects of the antioxidant, vitamin E, on the blood pressure and erythrocyte membrane fluidity in spontaneously hypertensive (SHR) and normotensive (WKY) rats. Membrane fluidity was assessed using spin labeling technique and electron paramagnetic resonance (EPR) spectroscopy. Two different spin labels were used in this study, 5-doxylstrearic acid (5-SASL) and 16-doxylstearic acid (16-SASL). The rats were given vitamin E, 3 days/week for 3 weeks and blood pressure was measured once weekly, using the tail-cuff method. Subsequently, blood was taken via heart puncture and erythrocytes were prepared for spin labeling. The fluidity of the membrane in the nonpolar region of erythrocytes from hypertensive rats was found quite different from that of normal rats as judged by the spectra of 16-SASL. The values of maximum splitting parameter of the EPR spectra of the spin label 5-SASL incorporated in erythrocyte membrane from both SHR and WKY rats, and the effects of vitamin E on membrane fluidity were compared. The maximum splitting parameter calculated from EPR spectra was larger for SHR than WKY rats. Additionally, the maximum splitting parameter calculated for vitamin E treated SHR and WKY rats were lower than those of their respective controls. As expected, the blood pressure of the SHR rats was found to be higher than that of the WKY rats. Vitamin E treated SHR and WKY rats showed significantly lower blood pressure than their controls.  相似文献   

5.
6.
To investigate the antihypertensive effects of conventional resistance exercise (RE) on the blood pressure (BP) of hypertensive subjects, 15 middle-aged (46 ± 3 years) hypertensive volunteers, deprived of antihypertensive medication (reaching 153 ± 6/93 ± 2 mm Hg systolic/diastolic BP after a 6-week medication washout period) were submitted to a 12-week conventional RE training program (3 sets of 12 repetitions at 60% 1 repetition maximum, 3 times a week on nonconsecutive days). Blood pressure was measured in all phases of the study (washout, training, detraining). Additionally, the plasma levels of several vasodilators or vasoconstrictors that potentially could be involved with the effects of RE on BP were evaluated pre- and posttraining. Conventional RE significantly reduced systolic, diastolic, and mean BP, respectively, by an average of 16 (p < 0.001), 12 (p < 0.01), and 13 mm Hg (p < 0.01) to prehypertensive values. There were no significant changes of vasoactive factors from the kallikrein-kinin or renin-angiotensin systems. After the RE training program, the BP values remained stable during a 4-week detraining period. Taken together, this study shows for the first time that conventional moderate-intensity RE alone is able to reduce the BP of stage 1 hypertensive subjects free of antihypertensive medication. Moreover, the benefits of BP reduction achieved with RE training remained unchanged for up to 4 weeks without exercise.  相似文献   

7.
8.
9.
An enhanced hypothalamo-pituitary-adrenocortical (HPA) activity has been described during onset of elevated blood pressure in spontaneously hypertensive rats (SHR). An instability of the HPA axis could thus contribute to the development of hypertension in these animals. Glucocorticoid effects on blood pressure and HPA function were studied therefore in SHR and normotensive Wistar-Kyoto (WKY) and Wistar rats. Beginning at 4 weeks of age, the rats were treated with 0.1 and 0.5 microgram betamethasone per milliliter drinking water for 7 weeks. SHR and WKY responded with a significant elevation in average blood pressure. In SHR, mean blood pressure rose from 181.4 +/- 3.9 (mean +/- SEM) to 203.1 +/- 2.8 mm Hg in response to the lower dose of betamethasone and to 209.2 +/- 4.0 mm Hg in response to 0.5 microgram betamethasone per milliliter drinking water. In WKY, blood pressure increased from 134.4 +/- 3.3 to 148.2 +/- 3.0 and 157.9 +/- 4.5 mm Hg in response to the lower and higher dose of betamethasone, respectively. No significant effect was seen in Wistar rats, where the mean blood pressure values changed insignificantly from 133.8 +/- 2.1 to 136.3 +/- 3.2 and 135.6 +/- 2.4 mm Hg. Stress-induced secretion of corticosterone was significantly suppressed in a dose-dependent manner in all three strains. Stress-induced secretion of adrenocorticotropin was markedly reduced by 0.5 microgram betamethasone per milliliter in SHR and by both doses in WKY. No significant effect, however, was seen in Wistar rats. A predisposition to the hypertensiogenic actions of glucocorticoids was found therefore in SHR and WKY, but not in Wistar rats.  相似文献   

10.
11.
J St-Louis  G Massicotte 《Life sciences》1985,37(14):1351-1357
Relaxin is an ovarian polypeptide hormone which is present in large amounts in the rat during the second half of gestation. During this period, blood pressure declines markedly, especially in spontaneously-hypertensive rats (SHR). To test the hypothesis that relaxin might be implicated in this decrease in blood pressure, we infused the hormone in female non-pregnant rats by means of an osmotic mini pump. Our results show that intravenous infusion of purified rat relaxin (1.8 micrograms/day) markedly reduced systolic blood pressure for at least 5 or 6 days in SHR. This decrease was highly significant from 24 hours after the beginning of the infusion and remained significant after 5 days. Rat relaxin was ineffective in control Wistar-Kyoto rats (WKY). Infusion of purified porcine relaxin (3.0 micrograms/day) also diminished blood pressure in SHR, but the effect was less pronounced and developed more slowly, reaching statistical significance on the fourth day of infusion. SHR not receiving relaxin maintained their original systolic blood pressure throughout the experiment. These results indicate that relaxin is involved in the regulation of blood pressure during gestation.  相似文献   

12.
Intracerebroventricular (icv) injection of hemicholinium-3 (HC-3) in doses of 10–20 μg causes a dose-related decrease in the blood pressure of conscious spontaneous hypertensive (SH) rats but not of normotensive rats. HC-3 also reduces heart rate (HR) in both SH and normotensive rats. The bradycardia was blocked by intravenous injection of methylatropine, implicating increased vagal activity as a cause of the response. The decrease in HR also was blocked by icv injection of atropine but not by icv injection of mecamylamine, suggesting that the bradycardia is mediated via central muscarinic receptors. In contrast, the fall in blood pressure in SH rats was not influenced by intravenous administration of methylatropine or by the icv injection of either atropine or mecamylamine.  相似文献   

13.
This study investigated (i) blood pressure (BP), heart rate (HR), and their relation to urinary NOx and eNOS protein expression in male and female spontaneously hypertensive rats (SHR), as well as (ii) gender-dependent cardiovascular effects of nebivolol (NEB) in comparison to metoprolol (MET) in SHR. BP and HR were measured telemetrically after a single intraperitoneal application of NEB or MET at 07.00 and 19.00 h in male rats and at 19.00 h in proestrus female rats. The two β-blockers varied in time of decreasing BP and HR and also in duration. In males, MET decreased BP and HR for few hours exclusively when applied at the onset of the activity phase (i.e., at 19.00 h), while after its application at 07.00 h, BP and HR were unchanged. In females, MET also caused a short-lasting BP and HR reduction, with the effect being more pronounced than in males. In males, NEB at either dosing time decreased HR and BP to a greater extent than did MET. This effect was evident both during the activity and rest periods and persisted for at least five days. In females, NEB provoked a similar, but more pronounced, effect on BP and HR in comparison to males. These findings demonstrate that significant gender-dependent differences in the circadian profile of BP and HR exist. BP and urinary NOx as well as eNOS expression are inversely correlated, and the cardiovascular effects of NEB and MET vary, depending on the time of application as well as gender.  相似文献   

14.
Intravenous (IV) and intraarterial (IA) infusion of 14,15-epoxyeicosatrienoic acid (14,15-EET) produced a dose-dependent decrease in mean arterial blood pressure (MAP) in normal and spontaneously hypertensive rats (SHR). The hypotensive effect of 14,15-EET was observed from 1 microgram/kg to 10 micrograms/kg with a maximum reduction in MAP as much as 45 +/- 6 mmHg in both normal and SHR. In normal rats the hypotensive effect was found to be more pronounced when 14,15-EET was infused IA than IV. This suggests that 14,15-EET may be metabolized as it passes through the lungs. However, in SHR there was no difference in MAP when 14,15-EET was infused either IA or IV. This indicates that there is a differential removal of the epoxide across the pulmonary circulation. Administration of indomethacin failed to inhibit the hypotensive action of 14,15-EET, suggesting that it may not be a cyclo-oxygenase dependent mechanism. However, the PAF antagonist of BN-52021 inhibited the hypotensive action of 14,15-EET. This therefore, suggests that the release of PAF may be involved in the hypotensive action of this epoxide of arachidonic acid.  相似文献   

15.
Corticosteroids have been shown to play a role in cardiac remodeling, with the possibility of a direct effect of overexpression of 11beta-hydroxysteroid dehydrogenase (11HSD) isoform 2 at the level of the cardiomyocytes. The aim of this study was to examine cardiac steroid metabolism in hypertensive rats with hearts that are hypertrophied and fibrotic and have structural alterations in the coronary circulation. To assess possible alterations of cardiac steroid metabolism the expression and activity of both isoforms of 11beta-hydroxysteroid dehydrogenase (11HSD) were studied in spontaneously hypertensive rats (SHR), their normotensive controls Wistar-Kyoto (WKY), and in Dahl salt-sensitive (DS) and salt-resistant rats (DR) kept on a low- or high-salt diet. Using real-time quantitative RT-PCR and enzyme activity assay we found strain-dependent differences in cardiac metabolism of glucocorticoids. In Dahl rats expression of 11HSD1 and 11HSD2 mRNA was lower in DS than in DR rats and was not influenced by dietary salt intake; 11HSD1 mRNA was expressed at higher level than 11HSD2 mRNA. NADP(+)-dependent cardiac 11HSD activity showed similar distribution as 11HSD1 mRNA-lower activity in DS than in DR rats and no effect of salt intake. In SHR and WKY strains 11HSD2 mRNA expression was significantly higher in WKY than in SHR but no differences were observed in 11HSD1 mRNA abundance and NADP(+)-dependent 11HSD activity. These results show that the heart is able to metabolize glucocorticoids and that this metabolism is strain-dependent but do not support the notion of association between cardiac hypertrophy and changes of 11HSD1 and 11HSD2 expression.  相似文献   

16.
Spontaneously hypertensive rats (SHR) have a higher level of oxidative stress and exhibit a greater depressor response to a superoxide scavenger, tempol, than normotensive Wistar-Kyoto rats (WKY). This study determined whether an increase in oxidative stress with a superoxide/NO donor, molsidomine, would amplify the blood pressure in SHR. Male SHR and WKY were given molsidomine (30 mg.kg(-1).day(-1)) or vehicle (0.01% ethanol) for 1 wk, and blood pressure, renal hemodynamics, nitrate and nitrite excretion (NOx), renal superoxide production, and expression of renal antioxidant enzymes, Mn- and Cu,Zn-SOD, catalase, and glutathione peroxidase (GPx), were measured. Renal superoxide and NOx were higher in control SHR than in WKY. Molsidomine increased superoxide by approximately 35% and NOx by 250% in both SHR and WKY. Mean arterial blood pressure (MAP) was also higher in control SHR than WKY. Molsidomine increased MAP by 14% and caused renal vasoconstriction in SHR but reduced MAP by 16%, with no effect on renal hemodynamics, in WKY. Renal expression of Mn- and Cu,Zn-SOD was not different between SHR and WKY, but expression of catalase and GPx were approximately 30% lower in kidney of SHR than WKY. The levels of Mn- and Cu,Zn-SOD were not increased with molsidomine in either WKY or SHR. Renal catalase and GPx expression was increased by 300-400% with molsidomine in WKY, but there was no effect in SHR. Increasing oxidative stress elevated blood pressure further in SHR but not WKY. WKY are likely protected because of higher bioavailable levels of NO and the ability to upregulate catalase and GPx.  相似文献   

17.
18.
In pithed rats, m-chlorophenylpiperazine (m-CPP) produced marked, dose-dependent (ED50 = 0.18 mumol) increases in mean arterial blood pressure which peaked within 1 minute and were sustained over 15 minutes. Two serotonin antagonists, metergoline and ritanserin, completely blocked the pressor responses to 2.5 mg/kg m-CPP in pithed adrenal demedullated rats, while alpha-adrenergic blockade by prazosin plus yohimbine was without effect, suggesting that the doubling in blood pressure produced by m-CPP was mediated via serotonin receptors within blood vessels. Somewhat smaller increases in blood pressure over baseline values were observed after m-CPP administration to conscious, freely moving rats. A small but statistically significant increase in heart rate peaked 5 minutes after m-CPP and also was blocked by metergoline but was only minimally affected by ritanserin or the prazosin-yohimbine combination. These results with m-CPP support other evidence for two or more separable effects of serotonergic agonists on the peripheral cardiovascular system.  相似文献   

19.
We tested the hypothesis that the actions of Angiotensin (Ang)-(1-7) in the heart could involve changes in tissue levels of Ang II. This possibility was addressed by determining the effect of chronic infusion of Ang-(1-7) on plasma and tissue angiotensins. Ang-(1-7) was infused subcutaneously (osmotic minipumps) in Wistar rats. Angiotensins were determined by radioimmunoassay (RIA) in plasma, heart, and kidney. Tissue and plasma angiotensin-converting enzyme (ACE) activity and plasma renin activity (PRA) were also measured. Cardiac and renal ACE2 mRNA levels and cardiac angiotensinogen mRNA levels were assessed by semi-quantitative polymerase chain reaction (PCR). AT1 receptor number was evaluated by autoradiograph. Chronic infusion of Ang-(1-7) (2 microg/h, 6 days) produced a marked decrease of Ang II levels in the heart. A less pronounced but significant decrease of Ang-(1-7) was also observed. No significant changes were observed for Ang I. Ang II was not altered in the kidney. In this tissue, a significant increase of Ang-(1-7) and Ang I concentration was observed. A significant increase of plasma Ang-(1-7) and Ang II was also observed. Ang-(1-7) infusion did not change ACE activity or PRA. A selective slight significant increase in ACE2 expression in the heart was observed. Heart angiotensinogen mRNA as well as the number of Ang II binding sites did not change. These results suggest that AT1 receptors-independent changes in heart Ang II concentration might contribute for the beneficial effects of Ang-(1-7) in the heart. Moreover, these results reinforce the hypothesis that this angiotensin plays an important site-specific role within the renin-angiotensin system.  相似文献   

20.
Kinins are vasoactive peptide hormones that can confer protection against the development of hypertension. Because their efficacy is greatly influenced by the rate of enzymatic degradation, the activities of various kininases in plasma and blood of spontaneously hypertensive rats (SHR) were compared with those in normotensive Wistar-Kyoto rats (WKY) to identify pathogenic alterations. Either plasma or whole blood was incubated with bradykinin (10 microM). Bradykinin and kinin metabolites were measured by high-performance liquid chromatography. Kininase activities were determined by cumulative inhibition of angiotensin I-converting enzyme (ACE), carboxypeptidase N (CPN), and aminopeptidase P (APP), using selective inhibitors. Plasma of WKY rats degraded bradykinin at a rate of 13.3 +/- 0.94 micromol x min(-1) x l(-1). The enzymes ACE, APP, and CPN represented 92% of this kininase activity, with relative contributions of 52, 25, and 16%, respectively. Inclusion of blood cells at physiological concentrations did not extend the activities of these plasma kininases further. No differences of kinin degradation were found between WKY and SHR. The identical conditions of kinin degradation in WKY and SHR suggest no pathogenic role of kininases in the SHR model of genetic hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号