首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Mitchell CA  Shi C  Aldrich CC  Gulick AM 《Biochemistry》2012,51(15):3252-3263
Many bacteria use large modular enzymes for the synthesis of polyketide and peptide natural products. These multidomain enzymes contain integrated carrier domains that deliver bound substrates to multiple catalytic domains, requiring coordination of these chemical steps. Nonribosomal peptide synthetases (NRPSs) load amino acids onto carrier domains through the activity of an upstream adenylation domain. Our lab recently determined the structure of an engineered two-domain NRPS containing fused adenylation and carrier domains. This structure adopted a domain-swapped dimer that illustrated the interface between these two domains. To continue our investigation, we now examine PA1221, a natural two-domain protein from Pseudomonas aeruginosa. We have determined the amino acid specificity of this new enzyme and used domain specific mutations to demonstrate that loading the downstream carrier domain within a single protein molecule occurs more quickly than loading of a nonfused carrier domain intermolecularly. Finally, we have determined crystal structures of both apo- and holo-PA1221 proteins, the latter using a valine-adenosine vinylsulfonamide inhibitor that traps the adenylation domain-carrier domain interaction. The protein adopts an interface similar to that seen with the prior adenylation domain-carrier protein construct. A comparison of these structures with previous structures of multidomain NRPSs suggests that a large conformational change within the NRPS adenylation domains guides the carrier domain into the active site for thioester formation.  相似文献   

2.
Combinatorial biosynthesis of novel secondary metabolites derived from nonribosomal peptide synthetases (NRPSs) has been in slow development for about a quarter of a century. Progress has been hampered by the complexity of the giant multimodular multienzymes. More recently, advances have been made on understanding the chemical and structural biology of these complex megaenzymes, and on learning the design rules for engineering functional hybrid enzymes. In this perspective, I address what has been learned about successful engineering of complex lipopeptides related to daptomycin, and discuss how synthetic biology and microbial genome mining can converge to broaden the scope and enhance the speed and robustness of combinatorial biosynthesis of NRPS-derived natural products for drug discovery.  相似文献   

3.
Stein DB  Linne U  Marahiel MA 《The FEBS journal》2005,272(17):4506-4520
Many pharmacologically important agents are assembled on multimodular nonribosomal peptide synthetases (NRPSs) whose modules comprise a set of core domains with all essential catalytic functions necessary for the incorporation and modification of one building block. Very often, d-amino acids are found in such products which, with few exceptions, are generated by the action of NRPS integrated epimerization (E) domains that alter the stereochemistry of the corresponding peptidyl carrier protein (PCP) bound l-intermediate. In this study we present a quantitative investigation of substrate specificity of four different E domains (two 'peptidyl-' and two 'aminoacyl-'E domains) derived from different NRPSs towards PCP bound peptides. The respective PCP-E bidomain apo-proteins (TycB(3)-, FenD(2)-, TycA- and GrsA-PCP-E) were primed with various peptidyl-CoA precursors by utilizing the promiscuous phosphopantetheinyl transferase Sfp. PCP bound peptidyl-S-Ppant epimerization products were chemically cleaved and analyzed for their l/d-ratios by LCMS. We were able to show that all four E domains tolerate a broad variety of peptidyl-S-Ppant-substrates as evaluated by k(obs) values and final l/d-product equilibria determined for each reaction. The two C-terminal amino acids of the substrate seem to be recognized by 'peptidyl-'E domains. Interestingly, the 'aminoacyl-'E domains GrsA- and TycA-E were also able to convert the elongated intermediates. All four E domains accepted an N-methylated precursor as well and epimerized this substrate with high efficiency. Finally, we could demonstrate that the condensation (C) domain of TycB(1) is also able to process peptidyl substrates transferred by TycA. In conclusion, these findings are of great impact on future engineering attempts.  相似文献   

4.
The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits alpha and beta are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell.  相似文献   

5.
Dissecting and exploiting nonribosomal peptide synthetases   总被引:1,自引:0,他引:1  
Over the past decade striking advances in microbialgenetics have propelled a revolution in our ability todeduce, analyze and manipulate the biosynthesis of struc-turally complex and biologically important families of na-ture products, one most notable cla…  相似文献   

6.
《Genomics》2022,114(6):110525
Non-ribosomal peptide synthetases (NRPSs) and NRPS-like enzymes are abundant in microbes as they are involved in the production of primary and secondary metabolites. In contrast to the well-studied NRPSs, known to produce non-ribosomal peptides, NRPS-like enzymes exhibit more diverse activities and their evolutionary relationships are unclear. Here, we present the first in-depth phylogenetic analysis of fungal NRPS-like A domains from functionally characterized pathways, and their relationships to characterized A domains found in fungal NRPSs. This study clearly differentiated amino acid reductases, including NRPSs, from CoA/AMP ligases, which could be divided into 10 distinct phylogenetic clades that reflect their conserved domain organization, substrate specificity and enzymatic activity. In particular, evolutionary relationships of adenylate forming reductases could be refined and explained the substrate specificity difference. Consistent with their phylogeny, the deduced amino acid code of A domains differentiated amino acid reductases from other enzymes. However, a diagnostic code was found for α-keto acid reductases and clade 7 CoA/AMP ligases only. Comparative genomics of loci containing these enzymes revealed that they can be independently recruited as tailoring genes in diverse secondary metabolite pathways. Based on these results, we propose a refined and clear phylogeny-based classification of A domain-containing enzymes, which will provide a robust framework for future functional analyses and engineering of these enzymes to produce new bioactive molecules.  相似文献   

7.
The present review focuses on microbial type I fatty acid synthases (FASs), demonstrating their structural and functional diversity. Depending on their origin and biochemical function, multifunctional type I FAS proteins form dimers or hexamers with characteristic organization of their catalytic domains. A single polypeptide may contain one or more sets of the eight FAS component functions. Alternatively, these functions may split up into two different and mutually complementing subunits. Targeted inactivation of the individual yeast FAS acylation sites allowed us to define their roles during the overall catalytic process. In particular, their pronounced negative cooperativity is presumed to coordinate the FAS initiation and chain elongation reactions. Expression of the unlinked genes, FAS1 and FAS2, is in part constitutive and in part subject to repression by the phospholipid precursors inositol and choline. The interplay of the involved regulatory proteins, Rap1, Reb1, Abf1, Ino2/Ino4, Opi1, Sin3 and TFIIB, has been elucidated in considerable detail. Balanced levels of subunits α and β are ensured by an autoregulatory effect of FAS1 on FAS2 expression and by posttranslational degradation of excess FAS subunits. The functional specificity of type I FAS multienzymes usually requires the presence of multiple FAS systems within the same cell. De novo synthesis of long-chain fatty acids, mitochondrial fatty acid synthesis, acylation of certain secondary metabolites and coenzymes, fatty acid elongation, and the vast diversity of mycobacterial lipids each result from specific FAS activities. The microcompartmentalization of FAS activities in type I multienzymes may thus allow for both the controlled and concerted action of multiple FAS systems within the same cell.  相似文献   

8.
Structural analysis of multi-domain protein complexes is a key challenge in current biology and a prerequisite for understanding the molecular basis of essential cellular processes. The use of solution techniques is important for characterizing the quaternary arrangements and dynamics of domains and subunits of these complexes. In this respect solution NMR is the only technique that allows atomic- or residue-resolution structure determination and investigation of dynamic properties of multi-domain proteins and their complexes. As experimental NMR data for large protein complexes are sparse, it is advantageous to combine these data with additional information from other solution techniques. Here, the utility and computational approaches of combining solution state NMR with small-angle X-ray and Neutron scattering (SAXS/SANS) experiments for structural analysis of large protein complexes is reviewed. Recent progress in experimental and computational approaches of combining NMR and SAS are discussed and illustrated with recent examples from the literature. The complementary aspects of combining NMR and SAS data for studying multi-domain proteins, i.e. where weakly interacting domains are connected by flexible linkers, are illustrated with the structural analysis of the tandem RNA recognition motif (RRM) domains (RRM1-RRM2) of the human splicing factor U2AF65 bound to a nine-uridine (U9) RNA oligonucleotide.  相似文献   

9.
BACKGROUND: Nonribosomal peptide synthetases (NRPSs) are large modular enzymes responsible for the synthesis of a variety of microbial bioactive peptides. They consist of modules that each recognise and incorporate one specific amino acid into the peptide product. A module comprises several domains, which carry out the individual reaction steps. After activation by the adenylation domain, the amino acid substrate is covalently tethered to a 4'-phosphopantetheinyl cofactor of a peptidyl carrier domain (PCP) that passes the substrate to the reaction centres of the consecutive domains. RESULTS: The solution structure of PCP, a distinct peptidyl carrier protein derived from the equivalent domain of an NRPS, was solved using NMR techniques. PCP is a distorted four-helix bundle with an extended loop between the first two helices. Its overall fold resembles the topology of acyl carrier proteins (ACPs) from Escherichia coli fatty acid synthase and actinorhodin polyketide synthase from Streptomyces coelicolor; however, the surface polarity and the length and relative alignment of the helices are different. The conserved serine, which is the cofactor-binding site, has the same location as in the ACPs and is situated within a stretch of seven flexible residues. CONCLUSIONS: The structure of PCP reflects its character as a protein domain. The fold is well defined between residues 8 and 82 and the structural core of the PCP domain can now be defined as a region spanning 37 amino acids in both directions from the conserved serine. The flexibility of the post-translationally modified site might have implications for interactions with the cooperating proteins or NRPS domains.  相似文献   

10.
With the emergence of drug resistance and the genomic revolution, there has been a renewed interest in the genes that are responsible for the generation of bioactive natural products. Secondary metabolites of one major class are biosynthesized at one or more sites by ultralarge enzymes that carry covalent intermediates on phosphopantetheine arms. Because such intermediates are difficult to characterize in vitro, we have developed a new approach for streamlined detection of substrates, intermediates, and products attached to a phosphopantetheinyl arm of the carrier site. During vibrational activation of gas-phase carrier domains, facile elimination occurs in benchtop and Fourier-transform mass spectrometers alike. Phosphopantetheinyl ejections quickly reduce >100 kDa megaenzymes to <1000 Da ions for structural assignment of intermediates at <0.007 Da mass accuracy without proteolytic digestion. This "top down" approach quickly illuminated diverse acyl intermediates on the carrier domains of the nonribosomal peptide synthetases (NRPSs) or polyketide synthases (PKSs) found in the biosynthetic pathways of prodigiosin, pyoluteorin, mycosubtilin, nikkomycin, enterobactin, gramicidin, and several proteins from the orphan pksX gene cluster from Bacillus subtilis. By focusing on just those regions undergoing covalent chemistry, the method delivered clean proof for the reversible dehydration of hydroxymethylglutaryl-S-PksL via incorporation of 2H or 18O from the buffer. The facile nature of this revised assay will allow diverse laboratories to spearhead their NRPS-PKS projects with benchtop mass spectrometers.  相似文献   

11.
12.
Domains are the evolutionary units that comprise proteins, and most proteins are built from more than one domain. Domains can be shuffled by recombination to create proteins with new arrangements of domains. Using structural domain assignments, we examined the combinations of domains in the proteins of 131 completely sequenced organisms. We found two-domain and three-domain combinations that recur in different protein contexts with different partner domains. The domains within these combinations have a particular functional and spatial relationship. These units are larger than individual domains and we term them "supra-domains". Amongst the supra-domains, we identified some 1400 (1203 two-domain and 166 three-domain) combinations that are statistically significantly over-represented relative to the occurrence and versatility of the individual component domains. Over one-third of all structurally assigned multi-domain proteins contain these over-represented supra-domains. This means that investigation of the structural and functional relationships of the domains forming these popular combinations would be particularly useful for an understanding of multi-domain protein function and evolution as well as for genome annotation. These and other supra-domains were analysed for their versatility, duplication, their distribution across the three kingdoms of life and their functional classes. By examining the three-dimensional structures of several examples of supra-domains in different biological processes, we identify two basic types of spatial relationships between the component domains: the combined function of the two domains is such that either the geometry of the two domains is crucial and there is a tight constraint on the interface, or the precise orientation of the domains is less important and they are spatially separate. Frequently, the role of the supra-domain becomes clear only once the three-dimensional structure is known. Since this is the case for only a quarter of the supra-domains, we provide a list of the most important unknown supra-domains as potential targets for structural genomics projects.  相似文献   

13.
A large number of antibiotics and other industrially important microbial secondary metabolites are synthesized by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These multienzymatic complexes provide an enormous flexibility in formation of diverse chemical structures from simple substrates, such as carboxylic acids and amino acids. Modular PKSs and NRPSs, often referred to as megasynthases, have brought about a special interest due to the colinearity between enzymatic domains in the proteins working as an “assembly line” and the chain elongation and modification steps. Extensive efforts toward modified compound biosynthesis by changing organization of PKS and NRPS domains in a combinatorial manner laid good grounds for rational design of new structures and their controllable biosynthesis as proposed by the synthetic biology approach. Despite undeniable progress made in this field, the yield of such “unnatural” natural products is often not satisfactory. Here, we focus on type II thioesterases (TEIIs)—discrete hydrolytic enzymes often encoded within PKS and NRPS gene clusters which can be used to enhance product yield. We review diverse roles of TEIIs (removal of aberrant residues blocking the megasynthase, participation in substrate selection, intermediate, and product release) and discuss their application in new biosynthetic systems utilizing PKS and NRPS parts.  相似文献   

14.
Non-ribosomally synthesized peptides have compelling biological activities ranging from antimicrobial to immunosuppressive and from cytostatic to antitumor. The broad spectrum of applications in modern medicine is reflected in the great structural diversity of these natural products. They contain unique building blocks, such as d-amino acids, fatty acids, sugar moieties, and heterocyclic elements, as well as halogenated, methylated, and formylated residues. In the past decades, significant progress has been made toward the understanding of the biosynthesis of these secondary metabolites by nonribosomal peptide synthetases (NRPSs) and their associated tailoring enzymes. Guided by this knowledge, researchers genetically redesigned the NRPS template to synthesize new peptide products. Moreover, chemoenzymatic strategies were developed to rationally engineer nonribosomal peptides products in order to increase or alter their bioactivities. Specifically, chemical synthesis combined with peptide cyclization mediated by nonribosomal thioesterase domains enabled the synthesis of glycosylated cyclopeptides, inhibitors of integrin receptors, peptide/polyketide hybrids, lipopeptide antibiotics, and streptogramin B antibiotics. In addition to the synthetic potential of these cyclization catalysts, which is the main focus of this review, different enzymes for tailoring of peptide scaffolds as well as the manipulation of carrier proteins with reporter-labeled coenzyme A analogs are discussed.  相似文献   

15.
Nonribosomal peptide synthetases (NRPSs) are multimodular proteins capable of producing important peptide natural products. Using an assembly line process, the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation‐PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C‐terminal subdomain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. Proteins 2014; 82:2691–2702. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins.  相似文献   

17.

Background

Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multi-domain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies.

Methodology

Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica.

Conclusions

The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multi-domain architecture.  相似文献   

18.
Serratia marcescens mutants defective in production of the red pigment prodigiosin and the biosurfactant serrawettin W1 in parallel were isolated by transposon mutagenesis of strain 274. Cloning of the DNA fragment required for production of these secondary metabolites with different chemical structures pointed out a novel open reading frame (ORF) named pswP. The putative product PswP (230 aa) has the distinct signature sequence consensus among members of phosphopantetheinyl transferase (PPTase) which phosphopantetheinylates peptidyl carrier protein (PCP) mostly integrated in the nonribosomal peptide synthetases (NRPSs) system. Since serrawettin W1 belongs to the cyclodepsipeptides, which are biosynthesized through the NRPSs system, and one pyrrole ring in prodigiosin has been reported as a derivative of L -proline tethered to phosphopantetheinylated PCP, the mutation in the single gene pswP seems responsible for parallel failure in production of prodigiosin and serrawettin W1.  相似文献   

19.
The multienzyme gramicidin S synthetase 2, composed of one polypeptide chain, was treated with trypsin and chymotrypsin to give fragments retaining partial enzyme activities. Previously, a tryptic fragment of this multienzyme has been identified as a structural and functional domain. In this study two more fragments, activating Leu and Val, respectively, are shown to represent domains. Careful inspection of the data on limited proteolysis, from this study as well as from previous work, suggests that domains are not simply connected like pearls on a string, and a model for the structure of gramicidin S synthetase, with implications for other peptide synthetase multienzymes, is presented. It is suggested that gramicidin S synthetase 2 is constructed from core catalytic domains and intervening framework. Such an interpretation is in accordance with all published data on limited proteolysis of peptide synthetases, but needs an interplay with gene structural studies in order to be validated and refined.  相似文献   

20.
Microorganisms produce a large number of pharmacologically and biotechnologically important peptides by using nonribosomal peptide synthetases (NRPSs). Due to their modular arrangement and their domain organization NRPSs are particularly suitable for engineering recombinant proteins for the production of novel peptides with interesting properties. In order to compare different strategies of domain assembling and module fusions we focused on the selective construction of a set of peptide synthetases that catalyze the formation of the dipeptide alpha-l-aspartyl-l-phenylalanine (Asp-Phe), the precursor of the high-intensity sweetener alpha-l-aspartyl-l-phenylalanine methyl ester (aspartame). The de novo design of six different Asp-Phe synthetases was achieved by fusion of Asp and Phe activating modules comprising adenylation, peptidyl carrier protein and condensation domains. Product release was ensured by a C-terminally fused thioesterase domains and quantified by HPLC/MS analysis. Significant differences of enzyme activity caused by the fusion strategies were observed. Two forms of the Asp-Phe dipeptide were detected, the expected alpha-Asp-Phe and the by-product beta-Asp-Phe. Dependent on the turnover rates ranging from 0.01-0.7 min-1, the amount of alpha-Asp-Phe was between 75 and 100% of overall product, indicating a direct correlation between the turnover numbers and the ratios of alpha-Asp-Phe to beta-Asp-Phe. Taken together these results provide useful guidelines for the rational construction of hybrid peptide synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号