首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Role of salicylic acid in resistance to cadmium stress in plants   总被引:4,自引:0,他引:4  

Key message

We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity.

Abstract

Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.
  相似文献   

2.
Nitric oxide (NO) is a bioactive gaseous, multifunctional molecule playing a central role and mediating a variety of physiological processes and responses to biotic and abiotic stresses including heavy metals. The present study investigated whether NO applied exogenously as sodium nitroprusside (SNP) has a protective role against arsenic (As) toxicity (applied as sodium arsenate) in Vigna radiata (mung bean) germinating seeds. Treatment with 75???M SNP significantly improved mung bean seed germination, growth, and decreased the As-accumulation. Furthermore, As-induced oxidative stress measured in terms of malondialdehyde and H2O2 contents was lesser upon supplementation of SNP indicating a reactive oxygen species scavenging activity of NO. In addition, supplementation of SNP markedly decreased the activity of superoxide dismutase and stimulated catalase, ??-amylase, protease and slightly changed the H+-ATPase activity.  相似文献   

3.
The hypothesis that physiologically activeconcentrations of salicylic acid (SA) and itsderivatives can confer stress tolerance in plants wasevaluated using bean (Phaseolus vulgaris L.) andtomato (Lycopersicon esculentum L.). Plantsgrown from seeds imbibed in aqueous solutions (0.1--0.5 mM) of salicylic acid or acetyl salicylic acid(ASA) displayed enhanced tolerance to heat, chillingand drought stresses. Seedlings acquired similarstress tolerance when SA or ASA treatments wereapplied as soil drenches. The fact that seedimbibition with SA or ASA confers stress tolerance inplants is more consistent with a signaling role ofthese molecules, leading to the expression oftolerance rather than a direct effect. Induction ofmultiple stress tolerance in plants by exogenousapplication of SA and its derivatives may have asignificant practical application in agriculture,horticulture and forestry.  相似文献   

4.
Fusarium wilt triggered great losing in tomato plants quality and quantity in all worlds. In the recent experiment, physiological resistance performance in tomato seedlings using Trichoderma harzianum and salicylic acid (SA) either (individual or combination) anti Fusarium had been studied. In vitro antifungal prospective of T. harzianum and SA against F. oxysporum were also examined. A noticeable antifungal capacity with highest activity of 10 and 8 mm ZOI after the treatment with the T. harzianum and SA. Also, Trichoderma have great ability to decreasing Fusarium growth by 25% inhibition at dual culture method. The MIC of SA was 1.5 mM to reduce Fusarium growth. For more ultrastructure by TEM of Fusarium treated with SA and Trichoderma showed alteration of cell wall as well as cytoplasmic components of mycelium, macroconidia and microconida. In the current experiment, ameliorative potentials of T. harzianum and SA either (individual or combination) via soil or foliar application were administered to the Fusarium- infected tomato plants and then disease index, growth indicators, photosynthetic pigments, metabolic markers, and antioxidant isozymes were assessed. The achieved result indicates that T. harzianum and SA through two modes (foliar and soil) lowered PDI by 12.50 and 20.83% and produced great protecting ability by 86.36 and 72.2%. The results revealed, infected seedlings exhibited high decrement in all tested growth characters, photosynthetic pigment contents, contents of total carbohydrate and protein, whereas proline, phenols and enzymes’ activity were elevated under Fusarium infectivity. It was concluded that use of combination (T. harzianum and SA) acted as a commercially eco-friendly instrument for intensifying the defense system of tomato plants against Fusarium wilt.  相似文献   

5.
6.
In this study, morphological, ultrastructural and physiological modifications of faba bean (Vicia faba cv Giza 461) leaves in response to bean yellow mosaic virus (BYMV) infection and salicylic acid (SA) treatments were examined. Under BYMV stress, leaves showed symptoms including severe mosaic, mottling, crinkling, size reduction and deformations. Three weeks after virus inoculation, photosynthetic rate, pigment contents and transpiration rate were significantly reduced in response to BYMV infection.

Ultrastructural investigations of BYMV-infected leaves demonstrated that most chloroplasts with increased stromal area became spherical in shape and some lost their envelopes, either partially or totally. The internal structures of chloroplast, grana and thylakoids were dilated. Two kinds of inclusions were detected in BYMV-infected leaves: straight or slightly curved bands sometimes coiled or looped at the end, and electron opaque crystals with varied shapes. BYMV-infected cells showed lower chloroplast number in comparison to the control.

Spraying of SA on faba bean leaves helped to reduce or prevent the harmful effects produced after virus infection. Application of 100 μM SA three days before inoculation restored the metabolism of infected leaves to the levels of healthy controls. SA treatment improved plant health by increasing the photosynthesis rates, pigment contents and levels of other parameters studied similar to control values.

Moreover, SA treatment increased plant resistance against BYMV. This was observed through induction of chloroplast number, reduction in percentage of infected plants, decrease in disease severity and virus concentration of plants treated with SA prior to BYMV inoculation. Cells of SA-treated samples showed well-developed chloroplasts with many starch grains and well-organized cell organelles.

The present results provide an overview of the negative effects on faba bean leaves due to BYMV infection from physiological and subcellular perspectives. Also, a role of SA involved in induction of resistance against BYMV infection in bean plants is discussed.  相似文献   


7.
The present study investigated the possible mediatory role of salicylic acid (SA) in protecting photosynthesis from cadmium (Cd) toxicity. Seeds of maize (Zea mays L., hybrid Norma) were sterilized and divided into two groups. Half of the seeds were presoaked in 500muM SA solution for only 6h, after which both groups were allowed to germinate for 3d and were then grown for 14d in Hoagland solution at 22/18 degrees C in a 16/8-h light/dark period and 120mumolm(-2)s(-1) PAR. All seedlings (without H(2)O and SA controls) were transferred to Cd-containing solutions (10, 15, and 25muM) and grown for 14d. The rate of CO(2) fixation and the activity of ribulose 1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were measured. Changes in the levels of several important parameters associated with oxidative stress, namely H(2)O(2) and proline production, lipid peroxidation, electrolyte leakage, and the activities of antioxidative enzymes (superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (POD, EC 1.11.1.7)) were measured. Exposure of the plants to Cd caused a gradual decrease in the shoot and root dry weight accumulation, with the effect being most pronounced at 25muM Cd. Seed pretreatment with SA alleviated the negative effect of Cd on plant growth parameters. The same tendency was observed for the chlorophyll level. The rate of CO(2) fixation was lower in Cd-treated plants, and the inhibition was partially overcome in SA-pretreated plants. A drop in the activities of RuBPC and PEPC was observed for Cd-treated plants. Pretreatment with SA alleviated the inhibitory effect of Cd on enzyme activity. Proline production and the rates of lipid peroxidation and electrolyte leakage increased in Cd-treated plants, whereas the values of these parameters were much lower in SA-pretreated plants. Treatment of plants with Cd decreased APX activity, but more than doubled SOD activity. Pretreatment with SA caused an increase in both APX and SOD activity, but caused a strong reduction in CAT activity. The data suggest that SA may protect cells against oxidative damage and photosynthesis against Cd toxicity.  相似文献   

8.
Biosynthesis of salicylic acid in plants   总被引:1,自引:0,他引:1  
Salicylic acid (SA) is an important signal molecule in plants. Two pathways of SA biosynthesis have been proposed in plants. Biochemical studies using isotope feeding have suggested that plants synthesize SA from cinnamate produced by the activity of phenylalanine ammonia lyase (PAL). Silencing of PAL genes in tobacco or chemical inhibition of PAL activity in Arabidopsis, cucumber and potato reduces pathogen-induced SA accumulation. Genetic studies, on the other hand, indicate that the bulk of SA is produced from isochorismate. In bacteria, SA is synthesized from chorismate through two reactions catalyzed by isochorismate synthase (ICS) and isochorismate pyruvate lyase (IPL). Arabidopsis contains two ICS genes but has no gene encoding proteins similar to the bacterial IPL. Thus, how SA is synthesized in plants is not fully elucidated. Two recently identified Arabidopsis genes, PBS3 and EPS1, are important for pathogen-induced SA accumulation. PBS3 encodes a member of the acyl-adenylate/thioester-forming enzyme family and EPS1 encodes a member of the BAHD acyltransferase superfamily. PBS3 and EPS1 may be directly involved in the synthesis of an important precursor or regulatory molecule for SA biosynthesis. The pathways and regulation of SA biosynthesis in plants may be more complicated than previously thought.Key words: salicylic acid biosynthesis, isochorismate synthase, phenylalanine ammonia lyase  相似文献   

9.
Salicylic acid (SA), a common plant phenolic compound, influences diverse physiological and biochemical processes in plants. To gain insight into the mode of interaction between auxin, ethylene, and SA, the effect of SA on auxininduced ethylene production in mung bean hypocotyls was investigated. Auxin markedly induced ethylene production, while SA inhibited the auxin-induced ethylene synthesis in a dose-dependent manner. At 1 mM of SA, auxininduced ethylene production decreased more than 60% in hypocotyls. Results showed that the accumulation of ACC was not affected by SA during the entire period of auxin treatment, indicating that the inhibition of auxin-induced ethylene production by SA was not due to the decrease in ACC synthase activity, the rate-limiting step for ethylene biosynthesis. By contrast, SA effectively reduced not only the basal level of ACC oxidase activity but also the wound-and ethylene-induced ACC oxidase activity, the last step of ethylene production, in a dose-dependent manner. Northern and immuno blot analyses indicate that SA does not exert any inhibitory effect on the ACC oxidase gene expression, whereas it effectively inhibits both the in vivo and in vitro ACC oxidase enzyme activity, thereby abolishing auxin-induced ethylene production in mung bean hypocotyl tissue. It appears that SA inhibits ACC oxidase enzyme activity through the reversible interaction with Fe2+, an essential cofactor of this enzyme. These results are consistent with the notion that ethylene production is controlled by an intimate regulatory interaction between auxin and SA in mung bean hypocotyl tissue.  相似文献   

10.
11.
Salicylic acid (SA) is a potent signaling molecule in plants and is involved in eliciting specific responses to biotic and abiotic stresses. The aim of this study is to investigate whether the exogenous application of SA can improve cadmium (Cd) induced inhibition of photosynthesis in castor bean (Ricinus communis L.) plants. The effects of SA and Cd on plant growth, spectral reflectance, pigment contents, chlorophyll fluorescence and gas exchange were examined in a hydroponic cultivation system. Results indicate that Cd exposure significantly decreased the dry biomass, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), pigment contents, quantum yield of PS II photochemistry (Fv/Fm), and effective quantum yield of PS II (??PS II) in the plants. Pretreatment with SA alone reduced the biomass and Pn in castor bean plants, whereas pigment contents, Fv/Fm and ??PS II remained unaffected. Reduced Gs, Ci and E, as well as increased stomatal limitation (Ls) and water use efficiency (WUE), were observed in plants pretreated with 500???M SA alone, whereas plants treated with 250???M SA were unaffected. Under Cd stress, SA pretreatment led to a significant decrease in Pn, Gs, E, Ci, and chlorophyll contents (Chl a, Chl b, Chl a+b, Car, Chl a/b), and an increase in Ls and WUE. Cd exposure enhanced spectral reflectance in the range 550?C680?nm and 750?C1,050?nm. It also decreased the normalized difference vegetation index (chlNDI), the modified red edge simple ratio index (mSR705), the red edge position (REP), water band index, and red/green ratio, whereas the structure independent pigment index (SIPI) was increased. Significant correlations (P?<?0.01) between spectral indices (mSR705, chlNDI, REP, red/green ratio) and pigment contents. SA significantly worsened plant growth and photosynthesis in Cd-stressed castor bean plants, in which a stomatal limitation was involved. The leaf spectral reflectance is a sensitive indicator in determining Cd toxicity in plants.  相似文献   

12.

Key message

Abiotic stress-induced superoxide generation depending on its localization, level, duration and presumably also on the action of other signals may lead to different stress responses.

Abstract

The purpose of this study was to analyze the alterations in superoxide generation and morphogenesis following short-term Cd, IAA and alloxan treatments, during stress and recovery period in barley root tips. At low Cd concentration the transient accumulation of superoxide in the epidermal cells was accompanied by root growth inhibition and radial expansion of cortical cells in the elongation zone of root tips. These morphological changes were very similar to the externally applied IAA-induced responses. However, the role of superoxide generated in the epidermal cells by low concentration of Cd and IAA is probably alone not sufficient for the induction of these processes. SDS as an activator of NOX activity caused a strong accumulation of superoxide in the epidermal cells along the whole root apex but without any changes in root morphology and growth. On the other hand, higher Cd concentrations as well as alloxan stimulated the generation of superoxide in the cortical tissue of the elongation zone of root tip, which was accompanied by the induction of cell death. Our results suggest that enhanced superoxide generation, depending on its localization, level, duration and presumably also on the action of other signals, may lead to altered root morphology (15?μM Cd or IAA), root growth inhibition (alloxan), transient root growth cessation (30?μM Cd) or to the death of cells/root at higher (60?μM) Cd concentrations.  相似文献   

13.
14.
Systemic acquired resistance (SAR), a natural disease response in plants, can be induced chemically. Salicylic acid (SA) acts as a key endogenous signaling molecule that mediates SAR in dicotyledonous plants. However, the role of SA in monocotyledonous plants has yet to be elucidated. In this study, the mode of action of the agrochemical protectant chemical probenazole was assessed by microarray-based determination of gene expression. Cloning and characterization of the most highly activated probenazole-responsive gene revealed that it encodes UDP-glucose:SA glucosyltransferase (OsSGT1) , which catalyzes the conversion of free SA into SA O- β-glucoside (SAG). We found that SAG accumulated in rice leaf tissue following treatment with probenazole or 2,6-dichloroisonicotinic acid. A putative OsSGT1 gene from the rice cultivar Akitakomachi was cloned and the gene product expressed in Escherichia coli was characterized, and the results suggested that probenazole-responsive OsSGT1 is involved in the production of SAG. Furthermore, RNAi-mediated silencing of the OsSGT1 gene significantly reduced the probenazole-dependent development of resistance against blast disease, further supporting the suggestion that OsSGT1 is a key mediator of development of chemically induced disease resistance. The OsSGT1 gene may contribute to the SA signaling mechanism by inducing up-regulation of SAG in rice plants.  相似文献   

15.
Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Sinapic acid is a phenylpropanoid compound and is found in various herbal materials and high-bran cereals. It has been reported that sinapic acid has antioxidant efficacy as metal chelators due to the orientation of functional groups. However, it has not yet been examined in experimental animals. In light of this fact, the purpose of this study was to characterize the protective role of sinapic acid against arsenic induced toxicity in rats. Rats were orally treated with arsenic alone (5 mg/kg body weight (bw)/day) plus sinapic acid at different doses (10, 20 and 40 mg/kg bw/day) for 30 days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes namely aspartate transaminase, alanine transaminase, alkaline phosphatase, gamma glutamyl transferase, lactate dehydrogenase and total bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances, lipid hydroperoxides, protein carbonyl content and conjugated dienes. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and glucose-6-phosphate dehydrogenase along with non-enzymatic antioxidant like reduced glutathione. Administration of sinapic acid exhibited significant reversal of arsenic induced toxicity in hepatic tissue. The effect at a dose of 40 mg/kg bw/day was more pronounced than the other two doses (10 and 20 mg/kg bw/day). All these changes were supported by reduction of arsenic concentration and histopathological observations of the liver. These results suggest that sinapic acid has a protective effect over arsenic induced toxicity in rat.  相似文献   

16.
17.
To understand the plant response to oxidative stresses, we studied the influence of magnesium (Mg++) deficiency on the formation of hydrogen peroxide (H2O2), malondialdehyde (MDA), and protease activity in kidney bean plants. The expression pattern of proteins under Mg++ deficiency also was examined via two-dimensional electrophoresis. The formation of H2O2 and MDA increased in the primary leaves of plants grown in a nutrient solution deficient in Mg++. Protease activity in Mg++-deficient plants was also higher than in those grown with sufficient Mg++. The expression pattern of the proteins showed that 25 new proteins were generated and 64 proteins disappeared under Mg++-deficient conditions. Therefore, a deficiency in Mg++ may cause oxidative stress and a change in protein expression. Some of these proteins may be related to the oxidative stress induced by Mg++ deficiency.  相似文献   

18.
Subcellular distribution and chemical form of cadmium in bean plants   总被引:27,自引:3,他引:27       下载免费PDF全文
The subcellular distribution and chemical form of Cd in bean plants grown in nutrient solutions containing Cd were investigated. Cd was accumulated mainly in roots and to a minor extent in leaves. Subcellular fractionation of Cd-containing tissues (pH 7.5) showed that more than 70% of the element was localized in the cytoplasmic fraction in roots as well as in leaves. Little Cd (8 to 14%) was bound either to the cell wall fraction or to the organelles. Gel filtration of the soluble fraction showed Cd to be associated mainly with 5,000 to 10,000 molecular weight components in roots, and 700 to 5,000 molecular weight components in leaves. Small amounts of Cd were found in the high molecular weight proteins (molecular weight 150,000). Only traces of Cd could be detected as a free ion. Chemical characterization of the low molecular weight components resulted in the identification of nine amino acids which were identical in roots and leaves. Cd in bean plants is assumed to be bound to peptides and/or proteins of low molecular weight.  相似文献   

19.
Soil salinity results in nutrient imbalances and potassium deficiency. However, very little work has been done on the damages of maize caused by exposure to a combination of potassium deficiency and salt-stress. Thus the influences of the combined stresses on the antioxidative defense system in maize seedlings were investigated. It was found that the growth of maize seedlings cultivated in a combination of potassium deficiency and salt stress was significantly inhibited, the compatible solute accumulation, permeability of plasma membrane, malondialdehyde as a degradation product of lipid peroxidation, reactive oxygen species such as superoxide radicals, hydrogen peroxide were higher than those of the individual potassium deficiency or salt-stress as expected. However, the antioxidative enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and antioxidants such as ascorbic acid and glutathione were lower than those of the individual potassium deficiency or salt-stress. Taken together, salt stress impairs K nutrition of maize seedlings, K deficiency at the cellular level might be a contributory factor to salt-induced oxidative stress and related cell damage.  相似文献   

20.
Exogenous salicylic acid has been shown to confer tolerance against biotic and abiotic stresses. In the present work the ability of its analogue, 4-hydroxybenzoic acid to increase abiotic stress tolerance was demonstrated: it improved the drought tolerance of the winter wheat (Triticum aestivum L.) cv. Cheyenne and the freezing tolerance of the spring wheat cv. Chinese Spring. Salicylic acid, however, reduced the freezing tolerance of Cheyenne and the drought tolerance of Chinese Spring, in spite of an increase in the guaiacol peroxidase and ascorbate peroxidase activity. The induction of cross tolerance between drought and freezing stress was observed: drought acclimation increased the freezing tolerance of Cheyenne plants and cold acclimation enhanced the drought tolerance. The induction of drought tolerance in Cheyenne was correlated with an increase in catalase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号