首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-type natriuretic peptide (CNP), a member of the family of natriuretic peptides, is synthesized and secreted from monocytes and macrophages that resulted to be a source of CNP at inflammatory sites. This suggests that special attention should be focused on the possible role of CNP in the immune system, in addition to its effects on the cardiovascular system. The aim of this study was to evaluate the possibility of measuring the mRNA expression of CNP and NPR-B, its specific receptor, in human whole blood samples of healthy (N; n=7) and heart failure (HF; n=7) subjects by Real-Time PCR (RT-PCR). Total RNA was extracted from leukocytes with QIAamp RNA Blood Kit and/or with PAXgene Blood RNA Kit. RT-PCR was performed and optimized for each primer. The experimental results were normalized with the three most stably expressed genes. CNP and NPR-B expression trend was similar in both fresh and frozen human whole blood. Significant higher levels of CNP and NPR-B mRNA expression were found in HF patients with respect to controls (CNP: N=1.23±0.33 vs. HF=6.54±2.09 p=0.027; NPR-B: N=0.85±0.23 vs. HF=5.31±1.98 p=0.04). A significant correlation between CNP and NPR-B (r=0.86, p<0.0001) was observed. Further studies are needed to clarify the pathophysiological properties of this peptide but the possibility to measure CNP and NPR-B mRNA expression in human leukocytes with a fast and easy procedure is a useful starting point for future investigation devoted to better understand the biomolecular processes associated to different diseases.  相似文献   

2.
C-type natriuretic peptide (CNP) was recently found in the myocardium, but possible insights into differences between atrium and ventricle production are so far lacking. Our aim was to evaluate, in an experimental model of pacing-induced heart failure (HF), plasma and tissue levels of CNP and mRNA expression of the peptide and of its specific receptor, NPR-B. Cardiac tissue was collected from male adult minipigs without (control, n=5) and with pacing-induced HF (n=5). Blood samples were collected at baseline and after pacing (10 min, 1, 2, 3 weeks). CNP in plasma and in cardiac extracts was determined by a radioimmunoassay, while the expression of mRNA by real time PCR. Compared to control, plasma CNP was increased after 1 week of pacing stress (36.9+/-10.4 pg/ml vs.16.7+/-1.1, p=0.013, mean+/-S.E.M.). As to myocardial extract, at baseline, CNP was found in all cardiac chambers and its content was 10-fold higher in atria than in ventricles (RA: 13.7+/-1.9 pg/mg protein; LA: 8.7+/-3.8; RV: 1.07+/-0.33; LV: 0.93+/-0.17). At 3 weeks of pacing, myocardial levels of CNP in left ventricle were higher than in controls (15.8+/-9.9 pg/mg protein vs. 0.9+/-0.17, p=0.01). CNP gene expression was observed in controls and at 3 weeks of pacing. NPR-B gene expression was found in all cardiac regions analyzed, and a down-regulation was observed in ventricles after HF. The co-localization of the CNP system and NPR-B suggests a possible role of CNP in HF and may prompt novel therapeutical strategies.  相似文献   

3.
Potthast R  Potter LR 《Peptides》2005,26(6):1001-1008
Natriuretic peptides are a family of hormones/paracrine factors that regulate blood pressure, cardiovascular homeostasis and bone growth. The mammalian family consists of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). A family of three cell surface receptors mediates their physiologic effects. Two are receptor guanylyl cyclases known as NPR-A/GC-A and NPR-B/GC-B. Peptide binding to these enzymes stimulates the synthesis of the intracellular second messenger, cGMP, whereas a third receptor, NPR-C, lacks enzymatic activity and functions primarily as a clearance receptor. Here, we provide a brief review of how various desensitizing agents and/or conditions inhibit NPR-A and NPR-B by decreasing their phosphorylation state.  相似文献   

4.
The cardiovascular actions of the C-type natriuretic peptide (CNP) are mainly mediated by the interaction with natriuretic peptide receptor-B (NPR-B). The aim of this study was to identify the sequence of NPR-B in Sus Scrofa, which is not present in GenBank, to verify the expression of NPR-B in the different cardiac chambers of normal pigs and evaluate its homology with murine and human species. Using the guanidinium thyocyanate-phenol-chloroform method, we extracted total RNA from samples obtained from heart of mouse and from the atrium, ventricle, and septum of normal pigs. Pig NPR-B mRNA was sequenced using polymerase chain reaction primers designed from mouse consensus sequences. Sus Scrofa natriuretic peptide receptor 2 mRNA, 1-396 bp, was submitted to GenBank (accession number DQ487044). The presence of NPR-B at mRNA level was detected in all the cardiac chambers; moreover, the bands obtained from pig cardiac tissue shared a 93% sequence homology with a region of the mouse NPR-B and a 95% sequence homology with Homo sapiens. Therefore, NPR-B sequencing provides a new tool to investigate the role of CNP under physiological and pathological conditions in the experimental and clinical setting.  相似文献   

5.
Wu ZJ  Jin W  Zhang FR  Liu Y 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素,主要包括A型、B型和C型利钠肽,具有相似的基因结构和生理学效应,可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性,调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽,通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示,其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化,与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制,为临床诊疗开辟新思路。  相似文献   

6.
吴志俊  金玮  张凤如  刘艳 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素, 主要包括A型、B型和C型利钠肽, 具有相似的基因结构和生理学效应, 可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性, 调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽, 通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示, 其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化, 与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制, 为临床诊疗开辟新思路。  相似文献   

7.
Natriuretic peptides are structurally similar, but genetically distinct, hormones that participate in cardiovascular homeostasis by regulating blood and extracellular fluid volume and blood pressure. We investigated the distribution of natriuretic peptides and their receptors in goat (Capra hircus) heart tissue using the peroxidase-anti-peroxidase (PAP) immunohistochemical method. Strong staining of atrial natriuretic peptide (ANP) was observed in atrial cardiomyocytes, while strong staining for brain natriuretic peptide (BNP) was observed in ventricular cardiomyocytes. Slightly stronger cytoplasmic C-type natriuretic peptide (CNP) immunostaining was detected in the ventricles compared to the atria. Natriuretic peptide receptor-A (NPR-A) immunoreactivity was more prominent in the atria, while natriuretic peptide receptor-B (NPR-B) immunoreactivity was stronger in the ventricles. Cytoplasmic natriuretic peptide receptor-C (NPR-C) immunoreactivity was observed in both the atria and ventricles, although staining was more prominent in the ventricles. ANP immunoreactivity ranged from weak to strong in endothelial and vascular smooth muscle cells. Endothelial cells exhibited moderate to strong BNP immunoreactivity, while vascular smooth cells displayed weak to strong staining. Endothelial cells exhibited weak to strong cytoplasmic CNP immunoreactivity. Vascular smooth muscle cells were labeled moderately to strongly for CNP. Weak to strong cytoplasmic NPR-A immunoreactivity was found in the endothelial cells and vascular smooth muscle cells stained weakly to moderately for NPR-A. Endothelial and vascular smooth cells exhibited weak to strong cytoplasmic NPR-B immunoreactivity. Moderate to strong NPR-C immunoreactivity was observed in the endothelial and smooth muscle cells. Small gender differences in the immunohistochemical distribution of natriuretic peptides and receptors were observed. Our findings suggest that endothelial cells, vascular smooth cells and cardiomyocytes express both natriuretic peptides and their receptors.  相似文献   

8.
Chang BS  Huang SC 《Regulatory peptides》2008,146(1-3):224-229
Natriuretic peptides have been demonstrated to cause relaxation of the human gallbladder muscle through interaction with natriuretic peptide receptor-B (NPR-B/NPR2). Effects of natriuretic peptides in the human esophageal muscle were unknown. To investigate the effects of natriuretic peptides in the human esophagus, we measured relaxation of muscularis mucosae strips isolated from the human esophagus caused by C-type natriuretic peptide (CNP), brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP) and des[Gln(18), Ser(19), Gly(20), Leu(21), Gly(22)]ANP(4-23) amide (cANP(4-23)), a selective natriuretic peptide receptor-C (NPR-C) agonist. In endothelin-1 or carbachol-contracted mucosal muscle strips, CNP caused moderate, sustained and concentration-dependent relaxation. BNP caused a very mild relaxation whereas ANP and cANP(4-23) did not cause any relaxation. CNP was much more potent than BNP and ANP in causing relaxation. These suggest the existence of NPR-B mediating relaxation. The CNP-induced relaxation was not affected by tetrodotoxin or atropine in endothelin-1-contracted esophageal strips and not by tetrodotoxin in carbachol-contracted strips, indicating a direct effect of CNP on the human esophageal muscularis mucosae. Taken together, these results demonstrate that natriuretic peptides cause relaxation of the muscularis mucosae of the human esophagus and suggest that the relaxation is through interaction with NPR-B. Natriuretic peptides may play an important role in the control of human esophageal motility.  相似文献   

9.
The discovery of cardiac natriuretic hormones required a profound revision of the concept of heart function. The heart should no longer be considered only as a pump but rather as a multifunctional and interactive organ that is part of a complex network and active component of the integrated systems of the body. In this review, we first consider the cross-talk between endocrine and contractile function of the heart. Then, based on the existing literature, we propose the hypothesis that cardiac endocrine function is an essential component of the integrated systems of the body and thus plays a pivotal role in fluid, electrolyte, and hemodynamic homeostasis. We highlight those studies indicating how alterations in cardiac endocrine function can better explain the pathophysiology of cardiovascular diseases and, in particular of heart failure, in which several target organs develop a resistance to the biological action of cardiac natriuretic peptides. Finally, we emphasize the concept that a complete knowledge of the cardiac endocrine function and of its relation with other neurohormonal regulatory systems of the body is crucial to correctly interpret changes in circulating natriuretic hormones, especially the brain natriuretic peptide.  相似文献   

10.
Natriuretic peptides are linked to osmoregulation, cardiovascular and volume regulation in fishes. The peptides bind to two guanylyl-cyclase-linked receptors, natriuretic peptide receptor-A (NPR-A) and NPR-B, to elicit their effects. Atrial natriuretic peptide (ANP) binds principally to NPR-A, whereas C-type natriuretic peptide (CNP) binds to NPR-B. The teleost kidney has an important role in the maintenance of fluid and electrolyte balance; therefore, the location of NPR-A and NPR-B in the kidney could provide insights into the functions of natriuretic peptides. This study used homologous, affinity purified, polyclonal antibodies to NPR-A and NPR-B to determine their location in the kidney of the Japanese eel, Anguilla japonica. Kidneys from freshwater and seawater acclimated animals were fixed overnight in 4% paraformaldehyde before being paraffin-embedded and immunostained. NPR-A immunoreactivity was found on the apical membrane of proximal tubule 1 and the vascular endothelium including the glomerular capillaries. In contrast, NPR-B immunoreactivity was located on the smooth muscle of blood vessels including the glomerular afferent and efferent arterioles, and on smooth muscle tissue surrounding the collecting ducts. No difference in the distribution of NPR-A and NPR-B was observed between freshwater and seawater kidneys. Immunoreactivity was not observed in any tissue in which the antibodies had been preabsorbed. In addition, there was no difference in NPR-A and NPR-B mRNA expression between freshwater-acclimated and seawater-acclimated eels. These results suggest that, although utilizing the same second messenger system, ANP and CNP act on different targets within the kidney and presumably elicit different effects.  相似文献   

11.
C-type natriuretic peptide (CNP) was recently found in myocardium at the mRNA and protein levels, but it is not known whether cardiomyocytes are able to produce CNP. The aim of this study was to determine the expression of CNP and its specific receptor NPR-B in cardiac cells, both in vitro and ex vivo. CNP, brain natriuretic peptide (BNP) and natriuretic peptide receptor (NPR)-B mRNA expression were examined by RT-PCR in the H9c2 rat cardiac myoblast cell line, in neonatal rat primary cardiomyocytes and in human umbilical vein endothelial cells (HUVECs) as control. CNP protein expression was probed in cardiac tissue sections obtained from adult male minipigs by immunohistochemistry, and in H9c2 cells both by immunocytochemistry and by specific radioimmunoassay. The results showed that cardiac cells as well as endothelial cells were able to produce CNP. Unlike cardiomyocytes, as expected, in endothelial cells expression of BNP was not detected. NPR-B mRNA expression was found in both cell types. Production of CNP in the heart muscle cells at protein level was confirmed by radioimmunological determination (H9c2: CNP = 0.86 ± 0.083 pg/mg) and by immunocytochemistry studies. By immunostaining of tissue sections, CNP was detected in both endothelium and cardiomyocytes. Expression of CNP in cardiac cells at gene and protein levels suggests that the heart is actively involved in the production of CNP.  相似文献   

12.
Sellitti DF  Koles N  Mendonça MC 《Peptides》2011,32(9):1964-1971
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.  相似文献   

13.
The binding of atrial natriuretic peptide and C-type natriuretic peptide (CNP) to the guanylyl cyclase-linked natriuretic peptide receptors A and B (NPR-A and -B), respectively, stimulates increases in intracellular cGMP concentrations. The vasoactive peptides vasopressin, angiotensin II, and endothelin inhibit natriuretic peptide-dependent cGMP elevations by activating protein kinase C (PKC). Recently, we identified six in vivo phosphorylation sites for NPR-A and five sites for NPR-B and demonstrated that the phosphorylation of these sites is required for ligand-dependent receptor activation. Here, we show that phorbol 12-myristate 13-acetate, a direct activator of PKC, causes the dephosphorylation and desensitization of NPR-B. In contrast to the CNP-dependent desensitization process, which results in coordinate dephosphorylation of all five sites in the receptor, phorbol 12-myristate 13-acetate treatment causes the dephosphorylation of only one site, which we have identified as Ser(523). The conversion of this residue to alanine or glutamate did not reduce the amount of mature receptor protein as indicated by detergent-dependent guanylyl cyclase activities or Western blot analysis but completely blocked the ability of PKC to induce the dephosphorylation and desensitization of NPR-B. Thus, in contrast to previous reports suggesting that PKC directly phosphorylates and inhibits guanylyl cyclase-linked natriuretic peptide receptors, we show that PKC-dependent dephosphorylation of NPR-B at Ser(523) provides a possible molecular explanation for how pressor hormones inhibit CNP signaling.  相似文献   

14.
Natriuretic peptides (NPs) are cyclic vasoactive peptide hormones with high therapeutic potential. Three distinct NPs (ANP, BNP, and CNP) can selectively activate natriuretic peptide receptors, NPR-A and NPR-B, raising the cyclic GMP (cGMP) levels. Insulin-degrading enzyme (IDE) was found to rapidly cleave ANP, but the functional consequences of such cleavages in the cellular environment and the molecular mechanism of recognition and cleavage remain unknown. Here, we show that reducing expression levels of IDE profoundly alters the response of NPR-A and NPR-B to the stimulation of ANP, BNP, and CNP in cultured cells. IDE rapidly cleaves ANP and CNP, thus inactivating their ability to raise intracellular cGMP. Conversely, reduced IDE expression enhances the stimulation of NPR-A and NPR-B by ANP and CNP, respectively. Instead of proteolytic inactivation, IDE cleavage can lead to hyperactivation of BNP toward NPR-A. Conversely, decreasing IDE expression reduces BNP-mediated signaling. Additionally, the cleavages of ANP and BNP by IDE render them active with NPR-B and a reduction of IDE expression diminishes the ability of ANP and BNP to stimulate NPR-B. Our kinetic and crystallographic analyses offer the molecular basis for the selective degradation of NPs and their variants by IDE. Furthermore, our studies reveal how IDE utilizes its catalytic chamber and exosite to engulf and bind up to two NPs leading to biased stochastic, non-sequential cleavages and the ability of IDE to switch its substrate selectivity. Thus, the evolutionarily conserved IDE may play a key role in modulating and reshaping the strength and duration of NP-mediated signaling.  相似文献   

15.
Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics.  相似文献   

16.
C-型钠尿肽与血管损伤性疾病   总被引:2,自引:0,他引:2  
C-型钠尿肽(C-type natriuretic peptide, CNP)作为钠尿肽家系的一员, 主要是由血管内皮分泌,CNP与血管平滑肌细胞钠尿肽受体-B(NPR-B)结合,激活颗粒型鸟苷酸环化酶,促进细胞内cGMP 水平升高,以旁分泌和/或自分泌方式调节循环系统功能稳态.CNP广泛分布于血管系统,尤其在内皮细胞中高表达.CNP具有利钠、利尿、调节血管张力、抑制血管平滑肌细胞迁移、增殖等作用,与高血压、动脉粥样硬化、血栓形成、冠脉成形术后再狭窄和血管钙化等多种血管损伤性疾病密切相关.  相似文献   

17.
C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family and acts through the membrane bound guanylyl cyclase linked natriuretic peptide receptor B (NPR-B) to increase intracellular cGMP. Activation of the CNP/NPR-B pathway in pulmonary epithelium has been linked to the inhibition of amiloride-sensitive sodium absorption and to the stimulation of the cystic fibrosis transmembrane conductance regulator (CFTR). Given the importance of ion movement across the pulmonary epithelium of the fetal and newborn lung, we sought to examine the expression of CNP and NPR-B in pulmonary epithelium of the developing fetal lamb and following the transition to air breathing. Lambs were sacrificed at 100 and 136 days of gestation and at 3 days, and 4 weeks after full term delivery. Lung sections were immunostained for CNP and NPR-B. At 100 days of gestation, staining for CNP and NPR-B was absent within all pulmonary epithelium. At 136 days of gestation, prominent staining for both CNP and NPR-B was seen within alveolar type II cells, non-ciliated cells of the distal airways (Clara cells), and ciliated epithelium of the upper airways. At both 3 days and 4 weeks following birth, staining for CNP and NPR-B was absent in alveolar type II cells, ciliated bronchial epithelium and was markedly reduced in Clara cells. The presence of CNP and NPR-B within the pulmonary epithelium in the nearterm fetal period and its rapid downregulation following birth suggests that CNP may contribute to the maintenance of the fluid-filled lung through the regulation of trans-epithelial ion flux.  相似文献   

18.
The natriuretic peptide family comprises atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), dendroaspis natriuretic peptide (DNP), and urodilatin. The activities of natriuretic peptides and endothelins are strictly associated with each other. ANP and BNP inhibit endothelin-1 (ET-1) production. ET-1 stimulates natriuretic peptide synthesis. All natriuretic peptides are synthesized from polypeptide precursors. Changes in natriuretic peptides and endothelin release were observed in many cardiovascular diseases: e.g. chronic heart failure, left ventricular dysfunction and coronary artery disease.  相似文献   

19.
Natriuretic peptides stimulate steroidogenesis in the fetal rat testis   总被引:1,自引:0,他引:1  
To study the regulation of fetal testicular steroidogenesis in the rat, we examined effects of members of the natriuretic peptide family, that is, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), on testosterone production of dispersed Leydig cells of rat fetuses at Embryonic Day (E) 18.5. All three peptides stimulated testosterone production, with significant effect at concentrations > or =1 x 10(-8) mol/L of ANP, > or =1 x 10(-9) mol/L of BNP, and > or =1 x 10(-6) mol/L of CNP. Likewise, receptors for all three peptides (i.e., NPR-A, NPR-B, and NPR-C) were expressed in the fetal testis as early as E15.5. The natriuretic peptides had no effect on cAMP production by fetal Leydig cells. When tested in combination with two other peptides previously shown to stimulate fetal testicular steroidogenesis, vasoactive intestinal peptide and pituitary adenylate cyclase-stimulating polypeptide (PACAP-27), the combined effects did not differ significantly from the maximum effect with any one of the peptides alone. In conclusion, our present findings provide both functional and molecular evidences for NPR-A, NPR-B, and NPR-C in the fetal testis. Because ANP has previously been detected in fetal plasma and we now demonstrate the expression of BNP and CNP in fetal testes, these findings indicate involvement of the natriuretic peptides in endocrine and paracrine regulation during the early phase of fetal testicular steroidogenesis at E15.5--19.5 (i.e., before the onset of pituitary LH secretion).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号