首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu SY  Wang DS  Zhu MZ  Zhang QH  Hu YZ  Pei JM 《Life sciences》2005,77(1):28-38
The aim of the present research is to investigate the effects of vasonatrin peptide (VNP) on hypoxia-induced proliferation and collagen synthesis in pulmonary artery smooth muscle cells (PASMCs). Smooth muscle cells isolated from rat pulmonary artery were cultured and used at passages 3-5. Cell proliferation and collagen synthesis were evaluated by cell counts, [(3)H] thymidine and [(3)H] proline incorporation. The results showed that cells exposed to hypoxia for 24 h exhibited a significant increase in [(3)H] thymidine (93%) and [(3)H] proline (52%) incorporation followed by a significant increase in cell number (47%) at 48 h in comparison with the respective normoxic controls. VNP reduced hypoxia-stimulated increase in cell proliferation in a concentration-dependent manner from 10(-8) to 10(-6) mol/L and attenuated hypoxia-induced collagen synthesis ranging from 10(-6) to 10(-5) mol/L, which is similar to but more potent than both ANP and CNP. The action of VNP on PASMCs was mimicked by 8-bromo-cGMP (10(-4) mol/L, the membrane-permeable cGMP analog), and blocked by HS-142-1 (2 x 10(-5) mol/L), the particulate guanylyl cyclase-coupled natriuretic peptide receptor antagonist, or KT-5823 (10(-6) mol/L), the cGMP-dependent protein kinase (PKG) inhibitor. The results suggest that VNP inhibits hypoxia-stimulated proliferation and collagen synthesis in cultured rat PASMCs via particulate guanylyl cyclase-coupled receptors through cGMP/PKG dependent mechanisms.  相似文献   

2.
1-Methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, selectively kills dopaminergic neurons in vivo and in vitro via a variety of toxic mechanisms, including mitochondrial dysfunction, generation of peroxynitrite, induction of apoptosis, and oxidative stress due to disruption of vesicular dopamine (DA) storage. To investigate the effects of acute MPP+ exposure on neuronal DA homeostasis, we measured stimulation-dependent DA release and non-exocytotic DA efflux from mouse striatal slices and extracellular, intracellular, and cytosolic DA (DAcyt) levels in cultured mouse ventral midbrain neurons. In acute striatal slices, MPP+ exposure gradually decreased stimulation-dependent DA release, followed by massive DA efflux that was dependent on MPP+ concentration, temperature, and DA uptake transporter activity. Similarly, in mouse midbrain neuronal cultures, MPP+ depleted vesicular DA storage accompanied by an elevation of cytosolic and extracellular DA levels. In neuronal cell bodies, increased DAcyt was not due to transmitter leakage from synaptic vesicles but rather to competitive MPP+-dependent inhibition of monoamine oxidase activity. Accordingly, monoamine oxidase blockers pargyline and l-deprenyl had no effect on DAcyt levels in MPP+-treated cells and produced only a moderate effect on the survival of dopaminergic neurons treated with the toxin. In contrast, depletion of intracellular DA by blocking neurotransmitter synthesis resulted in ∼30% reduction of MPP+-mediated toxicity, whereas overexpression of VMAT2 completely rescued dopaminergic neurons. These results demonstrate the utility of comprehensive analysis of DA metabolism using various electrochemical methods and reveal the complexity of the effects of MPP+ on neuronal DA homeostasis and neurotoxicity.  相似文献   

3.

Background

Parkinson’s disease is the second most common neurodegenerative disorders after Alzheimer’s disease. The main cause of the disease is the massive degeneration of dopaminergic neurons in the substantia nigra. Neuronal apoptosis and neuroinflammation are thought to be the key contributors to the neuronal degeneration.

Results

Both CATH.a cells and ICR mice were treated with 1-methyl-4-phenylpyridin (MPP+) to induce neurotoxicity in vitro and in vivo. Western blotting and immunohistochemistry were also used to analyse neurotoxicity, neuroinflammation and aberrant neurogenesis in vivo. The experiment in CATH.a cells showed that the treatment of MPP+ impaired intake of cell membrane and activated caspase system, suggesting that the neurotoxic mechanisms of MPP+ might include both necrosis and apoptosis. Pretreatment of lithospermic acid might prevent these toxicities. Lithospermic acid possesses specific inhibitory effect on caspase 3. In mitochondria, MPP+ caused mitochondrial depolarization and induced endoplasmic reticulum stress via increasing expression of chaperone protein, GRP-78. All the effects mentioned above were reduced by lithospermic acid. In animal model, the immunohistochemistry of mice brain sections revealed that MPP+ decreased the amount of dopaminergic neurons, enhanced microglia activation, promoted astrogliosis in both substantia nigra and hippocampus, and MPP+ provoked the aberrant neurogenesis in hippocampus. Lithospermic acid significantly attenuates all of these effects induced by MPP+.

Conclusions

Lithospermic acid is a potential candidate drug for the novel therapeutic intervention on Parkinson’s disease.  相似文献   

4.
In the present study we provide evidence for hydroxyl radical (OH) scavenging action of nitric oxide (NO), and subsequent dopaminergic neuroprotection in a hemiparkinsonian rat model. Reactive oxygen species are strongly implicated in the nigrostriatal dopaminergic neurotoxicity caused by the parkinsonian neurotoxin, 1-methyl-4-phenylpyridinium (MPP+). Since the role of this free radical as a neurotoxicant or neuroprotectant is debatable, we investigated the effects of some of the NO donors such as S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine hydrochloride (SIN-1), sodium nitroprusside (SNP) and nitroglycerin (NG) on in vitro OH generation in a Fenton-like reaction involving ferrous citrate, as well as in MPP+-induced OH production in the mitochondria. We also tested whether co-administration of NO donor and MPP+ could protect against MPP+-induced dopaminergic neurotoxicity in rats. While NG, SNAP and SIN-1 attenuated MPP+-induced OH generation in the mitochondria, and in a Fenton-like reaction, SNP caused up to 18-fold increase in OH production in the latter reaction. Striatal dopaminergic depletion following intranigral infusion of MPP+ in rats was significantly attenuated by NG, SNAP and SIN-1, but not by SNP. Solutions of NG, SNAP and SIN-1, exposed to air for 48 h to remove NO, when administered similarly failed to attenuate MPP+-induced neurotoxicity in vivo. Conversely, long-time air-exposed SNP solution when administered in rats intranigrally, caused a dose-dependent depletion of the striatal dopamine. These results confirm the involvement of OH in the nigrostriatal degeneration caused by MPP+, indicate the OH scavenging ability of NO, and demonstrate protection by NO donors against MPP+-induced dopaminergic neurotoxicity in rats.  相似文献   

5.
S-Allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse has been the most widely used model for assessing neuroprotective agents for Parkinson's disease. 1-Methyl-4-phenylpyridinium (MPP+) is the stable metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and it causes nigrostriatal dopaminergic neurotoxicity. Previous studies suggest that oxidative stress, via free radical production, is involved in MPP+-induced neurotoxicity. Here, we report on the neuroprotective effect of SAC against oxidative stress induced by MPP+ in the striatum of C57BL/6J mice. Mice were pretreated with SAC (125 mg/kg ip) daily for 17 days, followed by administration of MPP+ (0.72 mg/kg icv), and were sacrificed 24 h later to evaluate lipid peroxidation, different antioxidant enzyme activities, spontaneous locomotor activity and dopamine (DA) content. MPP+ administration resulted in a significant decrease in DA levels in the striatum. Mice receiving SAC (125 mg/kg ip) had significantly attenuated MPP+-induced loss of striatal DA levels (32%). The neuroprotective effect of SAC against MPP+ neurotoxicity was associated with blocked (100% of protection) of lipid peroxidation and reduction of superoxide radical production — indicated by an up-regulation of Cu-Zn-superoxide dismutase activity — both of which are indices of oxidative stress. Behavioral analyses showed that SAC improved MPP+-induced impairment of locomotion (35%). These findings suggest that in mice, SAC attenuates MPP+-induced neurotoxicity in the striatum and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects.  相似文献   

6.
In vivo, the neurotoxin MPTP is oxidated to MPP+, which is toxic to dopaminergic neurons. In this paper, we have used MPP+ as a tool to evoke neurotoxicity in the PC12 cell line and investigate the intracellular events that are involved. A cytotoxicity test, performed on undifferentiated and NGF-differentiated PC12 cells, showed that MPP+ is much more toxic on differentiated cells and indicated the suitable range of concentrations for studying the starting events evoked by the neurotoxin. By indirect immunofluorescence we have shown that the localisation of α - and β -tubulin in NGF-differentiated cells was modified by a 24 h treatment with 15 μmol/l MPP+. A biochemical analysis was performed on cell extracts and the results showed that MPP+ treatment induced an increase in α -tubulin levels and a decrease in β -tubulin levels. These results suggest the involvement of the two microtubule proteins in MPP+ neurotoxicity on NGF-differentiated PC12 cells.  相似文献   

7.
Vascular endothelial growth factor (VEGF), a specific pro-angiogenic peptide, has shown neuroprotective effects in the Parkinson’s disease (PD) models, but the underlying mechanisms remain elusive. In this study, the neuroprotective properties of VEGF on 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity in primary cerebellar granule neurons were investigated. Pretreatment of VEGF prevented MPP+-induced neuronal apoptosis in a concentration- and time-dependent manner. And this prevention was blocked by PTK787/ZK222584, a VEGF receptor-2 specific inhibitor. Both inhibition of the Akt pathway and activation of the extracellular signal-regulated kinase (ERK) pathway contribute to MPP+-induced neuronal apoptosis. VEGF reversed the inhibition of phosphoinositide 3-kinase (PI3-K)/Akt pathway caused by MPP+, but further enhanced the activation of ERK induced by MPP+. Interestingly, VEGF and PD98059 (an ERK kinase inhibitor) play a synergistic role in protecting neurons from MPP+-induced toxicity. Collectively, these findings suggest that the PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. This finding offers not only a new and clinically significant modality as to how VEGF exerts its neuroprotective effects but also a novel therapeutic strategy for PD by differentially regulating PD-associated signaling pathways.  相似文献   

8.
This study investigated the effect of naringin, a major flavonoid in grapefruit and citrus fruits, on the degeneration of the nigrostriatal dopaminergic (DA) projection in a neurotoxin model of Parkinson's disease (PD) in vivo and the potential underlying mechanisms focusing on the induction of glia-derived neurotrophic factor (GDNF), well known as an important neurotrophic factor involved in the survival of adult DA neurons. 1-Methyl-4-phenylpyridinium (MPP+) was unilaterally injected into the medial forebrain bundle of rat brains for a neurotoxin model of PD in the presence or absence of naringin by daily intraperitoneal injection. To ascertain whether naringin-induced GDNF contributes to neuroprotection, we further investigated the effects of intranigral injection of neutralizing antibodies against GDNF in the MPP+ rat model of PD. Our observations demonstrate that naringin could increase the level of GDNF in DA neurons, contributing to neuroprotection in the MPP+ rat model of PD, with activation of mammalian target of rapamycin complex 1. Moreover, naringin could attenuate the level of tumor necrosis factor-α in microglia increased by MPP+-induced neurotoxicity in the substantia nigra. These results indicate that naringin could impart to DA neurons the important ability to produce GDNF as a therapeutic agent against PD with anti-inflammatory effects, suggesting that naringin is a beneficial natural product for the prevention of DA degeneration in the adult brain.  相似文献   

9.
Wang X  Su B  Liu W  He X  Gao Y  Castellani RJ  Perry G  Smith MA  Zhu X 《Aging cell》2011,10(5):807-823
Selective degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease (PD) can be modeled by the administration of the neurotoxin 1‐methyl‐4‐phenylpyridinium (MPP+). Because abnormal mitochondrial dynamics are increasingly implicated in the pathogenesis of PD, in this study, we investigated the effect of MPP+ on mitochondrial dynamics and assessed temporal and causal relationship with other toxic effects induced by MPP+ in neuronal cells. In SH‐SY5Y cells, MPP+ causes a rapid increase in mitochondrial fragmentation followed by a second wave of increase in mitochondrial fragmentation, along with increased DLP1 expression and mitochondrial translocation. Genetic inactivation of DLP1 completely blocks MPP+‐induced mitochondrial fragmentation. Notably, this approach partially rescues MPP+‐induced decline in ATP levels and ATP/ADP ratio and increased [Ca2+]i and almost completely prevents increased reactive oxygen species production, loss of mitochondrial membrane potential, enhanced autophagy and cell death, suggesting that mitochondria fragmentation is an upstream event that mediates MPP+‐induced toxicity. On the other hand, thiol antioxidant N‐acetylcysteine or glutamate receptor antagonist D‐AP5 also partially alleviates MPP+‐induced mitochondrial fragmentation, suggesting a vicious spiral of events contributes to MPP+‐induced toxicity. We further validated our findings in primary rat midbrain dopaminergic neurons that 0.5 μm MPP+ induced mitochondrial fragmentation only in tyrosine hydroxylase (TH)‐positive dopaminergic neurons in a similar pattern to that in SH‐SY5Y cells but had no effects on these mitochondrial parameters in TH‐negative neurons. Overall, these findings suggest that DLP1‐dependent mitochondrial fragmentation plays a crucial role in mediating MPP+‐induced mitochondria abnormalities and cellular dysfunction and may represent a novel therapeutic target for PD.  相似文献   

10.
SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS) inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416 against MPP+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.  相似文献   

11.
To investigate the role of nitric oxide (NO)/reactive oxygen species (ROS) redox signaling in Parkinson's disease-like neurotoxicity, we used 1-methyl-4-phenylpyridinium (MPP+) treatment (a model of Parkinson's disease). We show that MPP+-induced neurotoxicity was dependent on ROS from neuronal NO synthase (nNOS) in nNOS-expressing PC12?cells (NPC12?cells) and rat cerebellar granule neurons (CGNs). Following MPP+ treatment, we found production of 8-nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP), a second messenger in the NO/ROS redox signaling pathway, in NPC12?cells and rat CGNs, that subsequently induced S-guanylation and activation of H-Ras. Additionally, following MPP+ treatment, extracellular signal-related kinase (ERK) phosphorylation was enhanced. Treatment with a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor attenuated MPP+-induced ERK phosphorylation and neurotoxicity. In conclusion, we demonstrate for the first time that NO/ROS redox signaling via 8-nitro-cGMP is involved in MPP+-induced neurotoxicity and that 8-nitro-cGMP activates H-Ras/ERK signaling. Our results indicate a novel mechanism underlying MPP+-induced neurotoxicity, and therefore contribute novel insights to the mechanisms underlying Parkinson's disease.  相似文献   

12.
The selective loss of dopaminergic neurons in the substantia nigra pars compacta is a feature of Parkinson’s disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity is the most common experimental model used to investigate the pathogenesis of PD. Administration of MPTP in mice produces neuropathological defects as observed in PD and 1-methyl-4-pyridinium (MPP+) induces cell death when neuronal cell cultures are used. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis. In the present study, we demonstrated that AMPK is activated by MPTP in mice and MPP+ in SH-SY5Y cells. The inhibition of AMPK by compound C resulted in an increase in MPP+-induced cell death. We further showed that overexpression of AMPK increased cell viability after exposure to MPP+ in SH-SY5Y cells. Based on these results, we suggest that activation of AMPK might prevent neuronal cell death and play a role as a survival factor in PD.  相似文献   

13.
The effect of natriuretic peptides on forskolin-evoked adenylyl cyclase activity was investigated in dispersed gill cells from the Australian short-finned eel (Anguilla australis). Molecular cloning techniques were employed to identify the putative G-protein-activating motif within the intracellular domain of the eel natriuretic peptide C receptor. Eel ANP, eel CNP and the NPR-C-specific C-ANF inhibited the forskolin-stimulated production of cyclic AMP. This effect was abolished by pretreatment of cells with pertussis toxin. Eel VNP was without effect on adenylyl cyclase activity. PCR and molecular cloning indicated that the intracellular domain of A. australis NPR-C has the same amino acid sequence as Anguilla japonica. Alignment of these sequences with Rattus norvegicus NPR-C indicated conservation of the putative G-protein-activating motif BB...BBXXB (B=basic, X=nonbasic residues). These data suggest that branchially-expressed NPR-C may play a physiological role additional to that of ligand clearance.Abbreviations ANP atrial natriuretic peptide - CNP C-type natriuretic peptide - cAMP cyclic adenosine monophosphate - cGMP cyclic guanosine monophosphate - eANP-NH2 amidated form of eel ANP - GC guanylyl cyclase - Gi inhibitory G-protein - IBMX isobutylmethylxanthine - NP natriuretic peptide - NPR natriuretic peptide receptor - PCR polymerase chain reaction - PTX pertussis toxin - VNP ventricular natriuretic peptideCommunicated by I.D. Hume  相似文献   

14.
EGb761 has been suggested to be an antioxidant and free radical scavenger. Excess generation of free radicals, leading to lipid peroxidation (LP), has been proposed to play a role in the damage to striatal neurons induced by 1-methyl-4-phenylpyridinium (MPP+). We investigated the effects of EGb761 pretreatment on MPP+ neurotoxicity. C-57 black mice were pretreated with EGb761 for 17 days at different doses (0.63, 1.25, 2.5, 5 or 10 mg/kg) followed by administration of MPP+, (0.18, 0.36 or 0.72 mg/kg). LP was analyzed in corpus striatum at 30 min, 1 h, 2 h and 24 h after MPP+ administration. Striatal dopamine content was analyzed by HPLC at the highest EGb761 dose at 2 h and 24 h after MPP+ administration. MPP+-induced LP was blocked (100%) by EGb761 (10 mg/kg). Pretreatment with EGb761 partially prevented (32%) the dopamine-depleting effect of MPP+ at 24 h. These results suggest that supplements of EGb761 may be effective at preventing MPP+-induced oxidative stress.  相似文献   

15.
Parkinson’s disease is a progressive neurodegenerative disorder, associated with the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Recent studies have shown that c-Jun-N terminal kinase pathways might be involved in the oxidative stress-induced neuronal demise. In addition, there are several studies demonstrating that selegiline protects neural cell degeneration. In view of the above, the toxic effects of MPP+ and the protective roles of selegiline were studied in cultures of human neuroblastoma (SK-N-SH) cell lines in the present study. MPP+ significantly decreased cell viability but increased reactive oxygen species formation and lipid peroxidation, and the said effects were attenuated by selegiline. MPP+ did not change the total levels of c-Jun but enhanced phosphorylation of c-Jun at Ser73 and cleavage of DNA fragmentation factor 45, which were diminished by selegiline. MPP+-treated SK-N-SH cells exhibited an irregularly shaped nuclear chromatin or DNA fragmentation, which was abolished by selegiline. These data suggest that c-Jun-N terminal kinase pathways are involved in oxidative stress-induced dopaminergic neuronal degeneration and pretreatment with selegiline affords neuroprotection by inhibiting these cell death-signaling pathways.  相似文献   

16.
Incubations of rat striatal slices have been used to assay MPP+ neurotoxicity. MPP+, at concentrations of 1 mM or higher, caused a marked increase in hydroxyl radicals, measured as malondialdehyde (MDA) accumulation, but not in nitric oxide production. At these doses, MPP+ showed an effect on dopamine terminals, causing a massive dopamine decrease, and on non-neuronal glial cells, where a marked reduction in glutamine synthetase activity was detected. At lower concentrations (25 μM), the toxic effect on dopaminergic endings was maintained without increasing malondialdehyde concentrations or inhibiting glutamine synthetase activity. The effect on glutamine synthetase was prevented by the addition to the medium of 0.5% dimethyl sulfoxide, a hydroxyl-radical scavenger, but this did not protect the effect of dopamine depletion. We propose that non-selective effects of MPP+, at doses of 1 mM or higher, are mediated by extracellular overproduction of hydroxyl radicals. The main factor responsible for this overproduction would not be the released dopamine but rather the MPP+ itself, through non selective inhibition of the mitochondrial respiratory chain or through a redox cycling that can trigger oxygen radical production.  相似文献   

17.
Parkinson’s disease (PD) is primarily caused by severe degeneration and loss of dopamine neurons in the substantia nigra pars compacta. Thus, preventing the death of dopaminergic neurons is thought to be a potential strategy to interfere with the development of PD. In the present work, we studied the effect of insulin-like growth factor-1 (IGF-1) on 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in human neuroblastoma SH-EP1 cells. We found that the PI3K/AKT pathway plays a central role in IGF-mediated cell survival against MPP+ neurotoxicity. Furthermore, we demonstrated that the protective effect of AKT is largely dependent on the inactivation of GSK-3β, since inhibition of GSK-3β by its inhibitor, BIO, could mimic the protective effect of IGF-1 on MPP+-induced cell death in SH-EP1 cells. Interestingly, the IGF-1 potentiated PI3K/AKT activity is found to negatively regulate the JNK related apoptotic pathway and this negative regulation is further shown to be mediated by AKT-dependent GSK-3β inactivation. Thus, our results demonstrated that IGF-1 protects SH-EP1 cells from MPP+-induced apoptotic cell death via PI3K/AKT/GSK-3β pathway, which in turn inhibits MPP+-induced JNK activation.  相似文献   

18.
19.
Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of natriuretic peptides; in the elasmobranchs, hypervolemia is the predominant physiological stimulus for secretion. Natriuretic peptides may be seawater-adapting hormones with appropriate target organs including the gills, rectal gland, kidney, and intestine, with each regulated via, predominantly, either A- or B-type (or C- or D-type?) natriuretic peptide receptors. Natriuretic peptides act both directly on ion-transporting cells of osmoregulatory tissues, and indirectly through increased vascular flow to osmoregulatory tissues, through inhibition of drinking, and through effects on other endocrine systems.  相似文献   

20.
Parkinson disease (PD) is a multifactorial disease resulting in preferential death of the dopaminergic neurons in the substantia nigra. Studies of PD-linked genes and toxin-induced models of PD have implicated mitochondrial dysfunction, oxidative stress, and the misfolding and aggregation of α-synuclein (α-syn) as key factors in disease initiation and progression. Many of these features of PD may be modeled in cells or animal models using the neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Reducing oxidative stress and nitric oxide synthase (NOS) activity has been shown to be protective in cell or animal models of MPP+ toxicity. We have previously demonstrated that siRNA-mediated knockdown of α-syn lowers the activity of both dopamine transporter and NOS activity and protects dopaminergic neuron-like cells from MPP+ toxicity. Here, we demonstrate that α-syn knockdown and modulators of oxidative stress/NOS activation protect cells from MPP+-induced toxicity via postmitochondrial mechanisms rather than by a rescue of the decrease in mitochondrial oxidative phosphorylation caused by MPP+ exposure. We demonstrate that MPP+ significantly decreases the synthesis of the antioxidant and obligate cofactor of NOS and TH tetrahydrobiopterin (BH4) through decreased cellular GTP/ATP levels. Furthermore, we demonstrate that RNAi knockdown of α-syn results in a nearly twofold increase in GTP cyclohydrolase I activity and a concomitant increase in basal BH4 levels. Together, these results demonstrate that both mitochondrial activity and α-syn play roles in modulating cellular BH4 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号