首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Peptides》2012,33(12):2459-2466
The aim of the present study was to investigate the protective effect of various doses of exogenous vasopressin (AVP) against ischemia–reperfusion injury in anesthetized rat heart. Anesthetized rats were randomly divided into seven groups (n = 4–13) and all of them subjected to prolonged 30 min regional ischemia and 120 min reperfusion. Group I served as saline control with ischemia, in treatment groups II, III, IV and V, respectively different doses of AVP (0.015, 0.03, 0.06 and 1.2 μg/rat) were infused within 10 min prior to ischemia, in group VI, an AVP-selective V1 receptor antagonist (SR49059, 1 mg/kg, i.v.) was administrated prior to effective dose of AVP injection and in group VII, SR49059 (1 mg/kg, i.v.) was only administrated prior to ischemia. Various doses of AVP significantly prevented the decrease in heart rate (HR) at the end of reperfusion compared to their baseline and decreased infarct size, biochemical parameters [LDH (lactate dehydrogenase), CK-MB (creatine kinase-MB) and MDA (malondialdehyde) plasma levels], severity and incidence of ventricular arrhythmia, episodes and duration of ventricular tachycardia (VT) as compared to control group. Blockade of V1 receptors by SR49059 attenuated the cardioprotective effect of AVP on ventricular arrhythmias and biochemical parameters, but partially returned infarct size to control. AVP 0.03 μg/rat was known as effective dose. Our results showed that AVP owns a cardioprotective effect probably via V1 receptors on cardiac myocyte against ischemia/reperfusion injury in rat heart in vivo.  相似文献   

2.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

3.
Angiotensin IV (Ang IV) is formed by aminopeptidase N from Ang III by removing the first N-terminal amino acid. Previously, we reported that Ang III has some cardioprotective effects against global ischemia in Langendorff heart. However, it is not clear whether Ang IV has cardioprotective effects. The aim of the present study was to evaluate the effect of Ang IV on myocardial ischemia-reperfusion (I/R) injury in rats. Before ischemia, male Sprague-Dawley rats received Ang IV (1 mg/kg/day) for 3 days. Anesthetized rats were subjected to 45 min of ischemia by ligation of left anterior descending coronary artery followed by reperfusion and then, sacrificed 1 day or 1 week after reperfusion. Plasma creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations, and infarct size were measured. Quantitative analysis of apoptotic and inflammatory proteins in ventricles were performed using Western blotting. Pretreatment with Ang IV attenuated I/R-induced increases in plasma CK and LDH levels, and infarct size, which were blunted by Ang IV receptor (AT4R) antagonist and but not by antagonist for AT1R, AT2R, or Mas receptor. I/R increased Bax, caspase-3 and caspase-9 protein levels, and decreased Bcl-2 protein level in ventricles, which were blunted by Ang IV. I/R-induced increases in TNF-α, MMP-9, and VCAM-1 protein levels in ventricles were also blunted by Ang IV. Ang IV increased the phosphorylation of Akt and mTOR. These effects were attenuated by co-treatment with AT4R antagonist or inhibitors of downstream signaling pathway. Myocardial dysfunction after reperfusion was improved by Ang IV. These results suggest that Ang IV has cardioprotective effect against I/R injury by inhibiting apoptosis via AT4R and PI3K-Akt-mTOR pathway.  相似文献   

4.
The reperfusion injury salvage kinase (RISK) pathway is a fundamental signal transduction cascade in the cardioprotective mechanism of ischemic postconditioning. In the present study, we examined the cardioprotective role of oxytocin as a postconditioning agent via activation of the RISK pathway (PI3K/Akt and ERK1/2).Animals were randomly divided into 6 groups. The hearts were subjected under 30 minutes (min) ischemia and 100 min reperfusion. OT was perfused 15 min at the early phase of reperfusion. RISK pathway inhibitors (Wortmannin; an Akt inhibitor, PD98059; an ERK1/2 inhibitor) and Atosiban (an OT receptor antagonist) were applied either alone 10 min before the onset of the ischemia or in the combination with OT during early reperfusion phase. Myocardial infarct size, hemodynamic factors, ventricular arrhythmia, coronary flow and cardiac biochemical marker were measured at the end of reperfusion.OT postconditioning (OTpost), significantly decreased the infarct size, arrhythmia score, incidence of ventricular fibrillation, Lactate dehydrogenase and it increased coronary flow. The cardioprotective effect of OTpos was abrogated by PI3K/Akt, ERK1/2 inhibitors and Atosiban.Our data have shown that OTpost can activate RISK pathway mostly via the PI3K/Akt and ERK1/2 signaling cascades during the early phase of reperfusion.  相似文献   

5.
Wu Y  Xia ZY  Dou J  Zhang L  Xu JJ  Zhao B  Lei S  Liu HM 《Molecular biology reports》2011,38(7):4327-4335
The objective of the current study is to investigate whether ginsenoside Rb1, a major pharmacological extract of ginseng that could attenuate myocardial ischemia reperfusion (MI/R) injury in non-diabetic myocardium, can attenuate MI/R injury in diabetes that are more vulnerable to ischemic insult. Rats were divided into seven groups: (i) diabetic sham, (ii) diabetic, (iii) normal, (iv) diabetic + ginsenoside Rb1, (v) diabetic + wortmannin, (vi) diabetic + wortmannin + ginsenoside Rb1, (vii) diabetic sham + wortmannin. Ginsenoside Rb1 and/or wortmannin were administered prior to inducing MI/R (30 min of coronary artery occlusion followed by 120 min reperfusion). At the end of the experiment, postischemic myocardial infarct size was significantly higher in the diabetic untreated group as compared to normal (P < 0.05), accompanied with increased myocardial apoptosis, elevated plasma CK-MB and LDH release and reduced blood pressure. Ginsenoside Rb1 reduced infarct size, cardiomyocyte apoptosis and caspase-3 activity compared to the diabetic group. The cardioprotective effects of ginsenoside Rb1 were cancelled by wortmannin. Ginsenoside Rb1 significantly upregulated phosphorylated Akt expression, which was attenuated by wortmannin. Ginsenoside Rb1 exerts cardioprotective effects against MI/R injury in diabetic rats, which is partly through activation of phosphatidylinositol 3-kinase (PI3 K)/Akt pathway. Thus this study shows a novel pharmacological preconditioning with ginsenoside Rb1 in the diabetic myocardium.  相似文献   

6.
It is well documented that the Toll-like receptor 4 (TLR4)/NF-κB signaling mediates early inflammation during myocardial ischemia and reperfusion. Our previous study has demonstrated that κ-opioid receptor stimulation with U50,488H produces cardioprotective and anti-inflammatory effects. The aim of the present study was to investigate whether κ-opioid receptor stimulation could modulate the TLR4/NF-κB signaling and reduce neutrophil accumulation and TNF-α induction in an ischemia–reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia and reperfusion (MI/R), and MI/R + U50,488H in the absence or presence of Nor-BNI, a selective κ-opioid receptor antagonist. The results demonstrated that after MI/R, the expressions of myocardial TLR4 and NF-κB increased significantly both in ischemia area and risking area. Compared with MI/R, κ-opioid receptor stimulation with U50,488H significantly attenuated the expressions of TLR4 and NF-κB. At the mean time, it also reduced myeloperoxidase (MPO) levels, both serum and myocardial TNF-α production, myocardial infarct sizes (INF/AAR%) and myocardial apoptosis induced by MI/R, all the effects of U50,488H were abolished by Nor-BNI. These data provide evidence for the first time that κ-opioid receptor stimulation inhibits TLR4/NF-κB signaling in the rat heart subjected to MI/R.  相似文献   

7.
Thioredoxin-1 maintains the cellular redox status and decreases the infarct size in ischemia/reperfusion injury. However, whether the increase of thioredoxin-1 expression or its lack of activity modifies the protection conferred by ischemic postconditioning has not been yet elucidated. The aim was to evaluate if the thioredoxin-1 overexpression enhances the posctconditioning protective effect, and whether the lack of the activity abolishes the reduction of the infarct size. Wild type mice hearts, transgenic mice hearts overexpressing thioredoxin-1, and a dominant negative mutant (C32S/C35S) of thioredoxin-1 were used. The hearts were subjected to 30 min of ischemia and 120 min of reperfusion (Langendorff) (I/R group) or to postconditioning protocol (PostC group). The infarct size in the Wt-PostC group decreased in comparison to the Wt-I/R group (54.6 ± 2.4 vs. 39.2 ± 2.1%, p < 0.05), but this protection was abolished in DN-Trx1-PostC group (49.7 ± 1.1%). The ischemia/reperfusion and postconditioning in mice overexpressing thioredoxin-1 reduced infarct size at the same magnitude (35.9 ± 2.1 and 38.4 ± 1.3%, p < 0.05 vs. Wt-I/R). In Wt-PostC, Trx1-I/R and Trx1- PostC, Akt and GSK3β phosphorylation increased compared to Wt-I/R, without changes in DN-Trx1 groups. In conclusion, given that the cardioprotection conferred by thioredoxin-1 overexpression and postconditioning, is accomplished through the activation of the Akt/GSK3β survival pathway, no synergic effect was evidenced. Thioredoxin-1 plays a key role in the postconditioning, given that when this protein is inactive the cardioprotective mechanism was abolished. Thus, diverse comorbidities or situations modifying the thioredoxin activity, could explain the absence of this strong mechanism of protection in different clinical situations.  相似文献   

8.
Diabetes, one of the major risk factors of metabolic syndrome culminates in the development of Ischemic Heart Disease (IHD). Refined diets that lack micronutrients, mainly trivalent chromium (Cr3+) have been identified as the contributor in the rising incidence of diabetes. We investigated the effect of niacin-bound chromium (NBC) during ischemia/reperfusion (IR) injury in streptozotocin induced diabetic rats. Rats were randomized into: Control (Con); Diabetic (Dia) and Diabetic rats fed with NBC (Dia + NBC). After 30 days of treatment, the isolated hearts were subjected to 30 min of global ischemia followed by 2 h of reperfusion. NBC treatment demonstrated significant increase in left ventricular functions and significant reduction in infarct size and cardiomyocyte apoptosis in Dia + NBC compared with Dia. Increased Glut-4 translocation to the lipid raft fractions was also observed in Dia + NBC compared to Dia. Reduced Cav-1 and increased Cav-3 expression along with phosphorylation of Akt, eNOS and AMPK might have resulted in increased Glut-4 translocation in Dia + NBC. Our results indicate that the cardioprotective effect of NBC is mediated by increased activation of AMPK, Akt and eNOS resulting in increased translocation of Glut-4 to the caveolar raft fractions thereby alleviating the effects of IR injury in the diabetic myocardium.  相似文献   

9.
《Cytokine》2010,52(3):278-285
Background: We investigated the safety and efficacy of GCSF therapy in a porcine model of ischemia–reperfusion with left ventricle ejection fraction of <45% using a clinically relevant dosing and timing regimen. Methods: MI was induced in pigs by a 90 min balloon occlusion of the left anterior descending coronary artery. Sixteen animals were randomized to either GCSF (IV bolus of 10 μg/kg at time of reperfusion, followed by SC injections of 5 μg/kg days 5–9 post-MI) or saline (control group). Inflammatory markers, bone marrow cell mobilization and LV function (echocardiography and pressure–volume measurements) were assessed at baseline, 1 and 6 weeks post-MI. Histopathology was performed 6 weeks post-MI. Results: GCSF therapy was associated with a significant increase in white blood cell counts. At week 6, GCSF therapy resulted in less deterioration of LVEF compared to control (38 ± 2% vs. 33 ± 2%, p < 0.02) and improved wall motion score index (p < 0.05). Histopathology revealed increased vascular density (p < 0.05) and a trend toward increased areas of viable myocardium compared to control (p = 0.058). Conclusion: GCSF therapy prevents further deterioration of LV function in a porcine model of MI with lower EF (<45%). These results support future clinical trials with GCSF in selected patients with larger MI.  相似文献   

10.
Novel purine analogues bearing nitrate esters were designed and synthesized in an effort to develop compounds triggering endogenous cardioprotective mechanisms such as ischemic preconditioning (IPC) or postconditioning (PostC). The majority of the compounds reduced infarct size compared to the control group in anesthetized rabbits, whereas administration of the most active analogue 16 at a dose of 3.8 μmol/kg resulted on a significant reduction of infarct size, compared to PostC group (13.4 ± 1.9% vs 26.4 ± 2.3%). These findings introduce a novel class of promising pharmacological compounds that could be used as mimics or enhancers of PostC.  相似文献   

11.
We have previously identified exosomes as the paracrine factor secreted by mesenchymal stem cells. Recently, we found that the key features of reperfusion injury, namely loss of ATP/NADH, increased oxidative stress and cell death were underpinned by proteomic deficiencies in ischemic/reperfused myocardium, and could be ameliorated by proteins in exosomes. To test this hypothesis in vivo, mice (C57Bl6/J) underwent 30 min ischemia, followed by reperfusion (I/R injury). Purified exosomes or saline was administered 5 min before reperfusion. Exosomes reduced infarct size by 45% compared to saline treatment. Langendorff experiments revealed that intact but not lysed exosomes enhanced viability of the ischemic/reperfused myocardium. Exosome treated animals exhibited significant preservation of left ventricular geometry and contractile performance during 28 days follow-up. Within an hour after reperfusion, exosome treatment increased levels of ATP and NADH, decreased oxidative stress, increased phosphorylated-Akt and phosphorylated-GSK-3β, and reduced phosphorylated-c-JNK in ischemic/reperfused hearts. Subsequently, both local and systemic inflammation were significantly reduced 24 h after reperfusion. In conclusion, our study shows that intact exosomes restore bioenergetics, reduce oxidative stress and activate pro-survival signaling, thereby enhancing cardiac function and geometry after myocardial I/R injury. Hence, mesenchymal stem cell-derived exosomes are a potential adjuvant to reperfusion therapy for myocardial infarction.  相似文献   

12.

Resveratrol (RSV), a plant origin polyphenol, has shown beneficial cardiovascular effects. In this study, isolated hearts from male Wistar rats were studied using the Langendorff technique. Following 30 min stabilization, the hearts underwent 30 min global ischemia and 120 min reperfusion. The perfusion solution in the test group contained RSV (10 μM). Hemodynamics of the hearts, the markers of myocardial damage including creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and troponin I were studied during the study. Furthermore, the infarct size and the markers of oxidative stress including catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPX) were assayed in the homogenates of the hearts. The release of nitrite from the hearts and the occurrence of ventricular arrhythmias were also monitored throughout the experiment. Resveratrol caused a significant improvement in the restoration of the mechanical performance of the hearts following myocardial ischemia and reperfusion (MIR). Besides, the infarct size, CK-MB, LDH, and troponin I declined in the test group. Besides, the cardiac release of nitrite increased, and the redox status of the heart was improved as indicated by the levels of CAT, SOD, GPX, and MDA. Finally, the treatment caused significant decreases in the occurrences of single and salvo arrhythmias, ventricular tachycardia, and ventricular fibrillation. The current study suggests strong cardioprotective and antiarrhythmic effects for RSV following MIR.

  相似文献   

13.
Cao Y  Zhang SZ  Zhao SQ  Bruce IC 《Life sciences》2011,88(23-24):1026-1030
AimsTo investigate the role of the mitochondrial Ca2+-activated K+ channel in cardioprotection induced by limb remote ischemic preconditioning.Main methodsMale Sprague–Dawley rats (250–300 g) were randomized into control, ischemia/reperfusion (I/R), remote ischemic preconditioning (RPC), NS1619 (a specific mitochondrial Ca2+-activated K+ channel opener), and RPC + paxilline (a specific mitochondrial Ca2+-activated K+ channel inhibitor) groups. RPC was induced by 4 cycles of 5 min of ligation followed by 5 min of reperfusion of the left femoral artery. Myocardial I/R was achieved by ligation of the left anterior descending coronary artery for 30 min, followed by 120 min of reperfusion. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride staining, the hemodynamics were monitored, and lactate dehydrogenase (LDH) levels in the coronary effluent, manganese superoxide dismutase (Mn-SOD) content in mitochondria and mitochondrial membrane potential were measured spectrophotometrically. The ultrastructure of cardiomyocyte mitochondria was assessed by electron microscopy.Key findingsNS1619 (10 μM) improved heart function, decreased infarct size, reduced LDH release, maintained mitochondrial structural integrity and mitochondrial membrane potential, and increased the mitochondrial content of Mn-SOD to the same degree as RPC treatment. However, paxilline (1 μM) eliminated the cardioprotective effect conferred by RPC.SignificanceThe mitochondrial Ca2+-activated K+ channel participates in the myocardial protection by limb remote ischemic preconditioning.  相似文献   

14.
Guan-Xin-Er-Hao (GXEH) is a Chinese medicine formula for treating ischemic heart diseases (IHD) and has a favorable effect. Our aim was to examine whether or not acute oral GXEH could protect the heart against myocardial infarction and apoptosis in acute myocardial ischemic rats. If so, we would explain the antioxidative mechanism involved. The left anterior descending coronary artery was occluded to induce myocardial ischemia in hearts of Sprague-Dawley rats. At the end of the 3 h ischemic period (or 24 h for infarct size), we measured the myocardial infarct size, myocardial apoptosis and the activities of antioxidative enzymes. GXEH reduced infarct size, myocardial apoptosis and the serum level of malondialdehyde (MDA), increased the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and GSH-peroxidase (GPX) activities and the serum level of glutathione (GSH). GXEH exerts significant cardioprotective effects against acute ischemic myocardial injury in rats, likely through its antioxidation and antilipid peroxidative properties, and thus may be used as a promising agent for both prophylaxis and treatment of IHD.  相似文献   

15.
BackgroundToll-like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. The TLR9 ligand, CpG-ODN has been reported to improve cell survival. We examined effect of CpG-ODN on myocardial I/R injury.MethodsMale C57BL/6 mice were treated with either CpG-ODN, control-ODN, or inhibitory CpG-ODN (iCpG-ODN) 1 h prior to myocardial ischemia (60 min) followed by reperfusion. Untreated mice served as I/R control (n = 10/each group). Infarct size was determined by TTC straining. Cardiac function was examined by echocardiography before and after myocardial I/R up to 14 days.ResultsCpG-ODN administration significantly decreased infarct size by 31.4% and improved cardiac function after myocardial I/R up to 14 days. Neither control-ODN nor iCpG-ODN altered I/R-induced myocardial infarction and cardiac dysfunction. CpG-ODN attenuated I/R-induced myocardial apoptosis and prevented I/R-induced decrease in Bcl2 and increase in Bax levels in the myocardium. CpG-ODN increased Akt and GSK-3β phosphorylation in the myocardium. In vitro data suggested that CpG-ODN treatment induced TLR9 tyrosine phosphorylation and promoted an association between TLR9 and the p85 subunit of PI3K. Importantly, PI3K/Akt inhibition and Akt kinase deficiency abolished CpG-ODN-induced cardioprotection.ConclusionCpG-ODN, the TLR9 ligand, induces protection against myocardial I/R injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.  相似文献   

16.
Heart failure (HF) is associated with changes in the skeletal muscle (SM) which might be a consequence of the unbalanced local expression of pro- (TNF-α) and anti- (IL-10) inflammatory cytokines, leading to inflammation-induced myopathy, and SM wasting. This local effect of HF on SM may, on the other hand, contribute to systemic inflammation, as this tissue actively secretes cytokines. Since increasing evidence points out to an anti-inflammatory effect of exercise training, the goal of the present study was to investigate its effect in rats with HF after post-myocardial infarction (MI), with special regard to the expression of TNF-α and IL-10 in the soleus and extensor digitorum longus (EDL), muscles with different fiber composition. Wistar rats underwent left thoracotomy with ligation of the left coronary artery, and were randomly assigned to either a sedentary (Sham-operated and MI sedentary) or trained (Sham-operated and MI trained) group. Animals in the trained groups ran on a treadmill (0% grade at 13–20 m/min) for 60 min/day, 5 days/week, for 8–10 weeks. The training protocol was able to reverse the changes induced by MI, decreasing TNF-α protein (26%, P < 0.05) and mRNA (58%, P < 0.05) levels in the soleus, when compared with the sedentary MI group. Training also increased soleus IL-10 expression (2.6-fold, P < 0.001) in post-MI HF rats. As a consequence, the IL-10/TNF-α ratio was increased. This “anti-inflammatory effect” was more pronounced in the soleus than in the EDL, suggesting a fiber composition dependent response.  相似文献   

17.
TNF-α inhibitor reportedly protects against myocardial ischemia/reperfusion (MI/R) injury. It can also increase Notch1 expression in inflammatory bowel disease, revealing the regulation of Notch1 signaling by TNF-α inhibitor. However, the interaction between TNF-α inhibitor and Notch1 signaling in MI/R remains unclear. This study aimed to determine the involvement of TNF-α inhibitor with Notch1 in MI/R and delineate the related mechanism. Notch1-specific small interfering RNA (20 μg) or Jagged1 (a Notch ligand, 12 μg) was delivered through intramyocardial injection. Forty-eight hours after injection, mice received 30 min of myocardial ischemia followed by 3 h (for cell apoptosis and oxidative/nitrative stress) or 24 h (for infarct size and cardiac function) of reperfusion. Ten minutes before reperfusion, mice randomly received an intraperitoneal injection of vehicle, etanercept, diphenyleneiodonium, 1400W, or EUK134. Finally, downregulation of Notch1 significantly reversed the alleviation of MI/R injury induced by etanercept, as evidenced by enlarged myocardial infarct size, suppressed cardiac function, and increased myocardial apoptosis. Moreover, Notch1 blockade increased the expression of inducible NO synthase (iNOS) and gp91phox, enhanced NO and superoxide production, and accelerated their cytotoxic reaction product, peroxynitrite. Furthermore, NADPH inhibition with diphenyleneiodonium or iNOS suppression with 1400W mitigated the aggravation of MI/R injury induced by Notch1 downregulation in mice treated with etanercept. Additionally, either Notch1 activation with Jagged1 or peroxynitrite decomposition with EUK134 reduced nitrotyrosine content and attenuated MI/R injury. These data indicate that MI/R injury can be attenuated by TNF-α inhibitor, partly via Notch1 signaling-mediated suppression of oxidative/nitrative stress.  相似文献   

18.
19.
20.
AimsWe previously reported that minocycline attenuates acute brain injury and inflammation after focal cerebral ischemia, and this is partly mediated by inhibition of 5-lipoxygenase (5-LOX) expression. Here, we determined the protective effect of minocycline on chronic ischemic brain injury and its relation with the inhibition of 5-LOX expression after focal cerebral ischemia.Main methodsFocal cerebral ischemia was induced by 90 min of middle cerebral artery occlusion followed by reperfusion for 36 days. Minocycline (45 mg/kg) was administered intraperitoneally 2 h and 12 h after ischemia and then every 12 h for 5 days. Sensorimotor function was evaluated 1–28 days after ischemia and cognitive function was determined 30–35 days after ischemia. Thereafter, infarct volume, neuron density, astrogliosis, and 5-LOX expression in the brain were determined.Key findingsMinocycline accelerated the recovery of sensorimotor and cognitive functions, attenuated the loss of neuron density, and inhibited astrogliosis in the boundary zone around the ischemic core, but did not affect infarct volume. Minocycline significantly inhibited the increased 5-LOX expression in the proliferated astrocytes in the boundary zone, and in the macrophages/microglia in the ischemic core.SignificanceMinocycline accelerates functional recovery in the chronic phase of focal cerebral ischemia, which may be partly associated with the reduction of 5-LOX expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号