首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the process of coevolution, social parasites have evolved sophisticated strategies to exploit the brood care behavior of their social hosts. Slave-making ant queens invade host colonies and kill or eject all adult host ants. Host workers, which eclose from the remaining brood, are tricked into caring for the parasite brood. Due to their high prevalence and frequent raids, following which stolen host broods are similarly enslaved, slave-making ants exert substantial selection upon their hosts, leading to the evolution of antiparasite adaptations. However, all host defenses shown to date are active before host workers are parasitized, whereas selection was thought to be unable to act on traits of already enslaved hosts. Yet, here we demonstrate the rebellion of enslaved Temnothorax workers, which kill two-thirds of the female pupae of the slave-making ant Protomognathus americanus . Thereby, slaves decrease the long-term parasite impact on surrounding related host colonies. This novel antiparasite strategy of enslaved workers constitutes a new level in the coevolutionary battle after host colony defense has failed. Our discovery is analogous to recent findings in hosts of avian brood parasites where perfect mimicry of parasite eggs leads to the evolution of chick recognition as a second line of defense.  相似文献   

2.
Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the individual and collective disease defences in the ant Cardiocondyla obscurior. We compared the antiseptic behaviours (grooming and hygienic behaviour) of workers from genetically homogeneous and diverse colonies after exposure of their brood to the entomopathogenic fungus Metarhizium anisopliae. While workers from diverse colonies performed intensive allogrooming and quickly removed larvae covered with live fungal spores from the nest, workers from homogeneous colonies only removed sick larvae late after infection. This difference was not caused by a reduced repertoire of antiseptic behaviours or a generally decreased brood care activity in ants from homogeneous colonies. Our data instead suggest that reduced genetic diversity compromises the ability of Cardiocondyla colonies to quickly detect or react to the presence of pathogenic fungal spores before an infection is established, thereby affecting the dynamics of social immunity in the colony.  相似文献   

3.
Social insects have evolved a suite of sophisticated defences against parasites. In addition to the individual physiological immune response, social insects also express ‘social immunity’ consisting of group-level defences and behaviours that include allogrooming. Here we investigate whether the social immune response of the leaf-cutting ant Acromyrmex echinatior reacts adaptively to the virulent fungal parasite, Metarhizium anisopliae. We ‘immunized’ mini-nests of the ants by exposing them twice to the parasite and then compared their social immune response with that of naive mini-nests that had not been experimentally exposed to the parasite. Ants allogroomed individuals exposed to the parasite, doing this both for those freshly treated with the parasite, which were infectious but not yet infected, and for those treated 2 days previously, which were already infected but no longer infectious. We found that ants exposed to the parasite received more allogrooming in immunized mini-nests than in naive mini-nests. This increased the survival of the freshly treated ants, but not those that were already infected. The results thus indicate that the social immune response of this leaf-cutting ant is adaptive, with the group exhibiting a greater and more effective response to a parasite that it has previously been exposed to.  相似文献   

4.
5.
Social parasites are able to exploit their host's communication code and achieve social integration. For colony foundation, a newly mated slave-making ant queen must usurp a host colony. The parasite's brood is cared for by the hosts and newly eclosed slave-making workers integrate to form a mixed ant colony. To elucidate the social integration strategy of the slave-making workers, Polyergus rufescens, behavioural and chemical analyses were carried out. Cocoons of P. rufescens were introduced into subcolonies of four potential host species: Formica subgenus Serviformica (Formica cunicularia and F. rufibarbis, usual host species; F. gagates, rare host; F. selysi, non-natural host). Slave-making broods were cared for and newly emerged workers showed several social interactions with adult Formica. We recorded the occurrence of abdominal trophallaxis, in which P. rufescens, the parasite, was the donor. Social integration of P. rufescens workers into host colonies appears to rely on the ability of the parasite to modify its cuticular hydrocarbon profile to match that of the rearing species. To study the specific P. rufescens chemical profile, newly emerged callows were reared in isolation from the mother colony (without any contact with adult ants). The isolated P. rufescens workers exhibited a chemical profile closely matching that of the primary host species, indicating the occurrence of local host adaptation in the slave-maker population. However, the high flexibility in the ontogeny of the parasite's chemical signature could allow for host switching.  相似文献   

6.
Social parasitism is a common phenomenon amongst ants that occurs in manifold variations with differing levels of parasite–host integration. Particularly, high levels of social integration occur amongst closely related species (Emery’s rule), which form mixed colonies with their hosts and comprise the vast majority of social parasites. Considerable lower levels of integration are typically found amongst unrelated species that live in clearly separated colonies. The formicine ant Polyrhachis lama, however, parasitises a phylogenetically distant host species, Diacamma sp. of the subfamily Ponerinae, but lives spatially mixed with the host colonies. Studies on integration and communication have indicated that P. lama shows a high degree of host integration. However, the allocation of brood care behaviour, a central aspect of parasite integration, has not been studied. Because all known ant social parasites that are fully mixed with their host colonies are also true brood parasites, we investigated the integration of P. lama brood. Our results demonstrate that the parasite brood has a high degree of spatial integration, although it remains functionally separated regarding nutritive brood care. This can be attributed to behavioural and morphological differences between the phylogenetically distant species. The observed spatial confinement of parasite brood, however, is most likely due to an unusual method of chemical host integration. The parasite brood remains accepted in the Diacamma colonies only under the presence of adult parasites. Altogether, this suggests an active mechanism of chemical integration based on the acceptance allomones originating from P. lama workers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making) ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi) within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis.

Results

Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections) towards parasite than toward non-parasite intruders.

Conclusions

We used two different analyses of our behavioral data (standardized with the chemical distance between colonies or not) to test our hypothesis. Standardized data show behavioral differences which could indicate qualitative and specific parasite recognition. We finally stress the importance of considering the whole set of potentially interacting species to understand the coevolution between social parasites and their hosts.
  相似文献   

8.
Spatial organization was estimated in mixed-species groups of ants with interindividual distance measures as a function of: (1) the age of the workers when associated; and (2) the presence of the brood. Workers ofManica rubida (Myrmicinae) andFormica selysi (Formicinae) were reared in single-species groups (control) or in artificial, mixed-species groups, created 5 h, 12 h or 22 h after emergence, with or without brood. By recording the location of each individual in the nest during the 10 days following the creation of the groups, we evaluated the spatial organization and the interindividual distances between homocolonial or allospecific workers, and between workers and homocolonial or allospecific brood. The cohesion of the group, depend on the age of the workers when associated: the younger the individuals are when the groups are created, the smaller are the interindividual distances. Moreover, homocolonial individuals aggregated with brood, when present, which improves the overall cohesion of the group. However, in mixed groups, both species associated preferentially with members of their own species. This suggests that newly-emerged ants do not depend totally on the odors of their nestmates to construct their recognition template and that they also possess an innate, specific template.  相似文献   

9.
Social parasitism, one of the most intriguing phenomena in ants, has evolved to various levels, the most extreme form being parasites that have lost the worker caste and rely completely on the host''s worker force to raise their brood. A remarkable feature of workerless social parasites is the small size of sexuals. It has been suggested that reduced size evolved as a means to take advantage of the host''s caste-determination system, so that parasite larvae develop into sexuals with less food than is required to produce host workers. An important consequence of size reduction is that it might restrict the host workers'' ability to discriminate between the brood of the social parasite and their own brood and might protect parasite sexuals from elimination. We found that sexuals of the workerless inquiline ant Plagiolepis xene were significantly smaller than the sexuals of their host Plagiolepis pygmaea, but remarkably similar to the host workers. The size variance of parasite sexuals was much lower than that of their host; this result possibly suggests that there is very stabilizing selection acting on size of the parasite sexuals. Comparison of the primary (egg) and secondary (adult) sex ratios of the parasite and host showed that miniaturization of P. xene sexuals has been accompanied by their ability to develop into sexuals even when the host P. pygmaea actively prevents production of its own sexuals. These results suggest that the inquiline''s size and caste threshold have been reduced such that all individuals in a parasite brood will develop into sexuals. We also found that the adult sex ratio of P. xene was heavily female-biased. This bias probably stems from local mate competition that arises from sexuals mating within the nest. There was no significant difference between the proportion of haploid eggs and adult males produced; this observation indicates that a female-biased sex ratio is achieved by queens producing a higher proportion of diploid eggs rather than by a higher mortality of haploid males.  相似文献   

10.
Disgust can be thought of as an affective system that has evolved to detect signs of pathogens, parasite and toxins as well as to stimulate behaviors that reduce the risk of their acquisition. Disgust incorporates social cognitive mechanisms to regulate exposure to and, or anticipate and avoid exposure to pathogens and toxins. Social cognition entails the acquisition of social information about others (ie, social recognition) and from others (ie, social learning). This involves recognizing and assessing other individuals and the pathogen/parasite/contamination/toxin threat they pose and deciding about when and how to interact with and, or avoid them. Social cognition provides a frame‐work for examining the expression of disgust and the associated neurobiological mechanisms. Here, we briefly consider the relations between social cognition and pathogen/parasite/toxin avoidance behaviors. We briefly discuss aspects of: (1) the odor mediated social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on disgust mate and social partner choice; (2) the roles of “out‐groups” (strangers, unfamiliar individuals) and “in‐groups” (familiar individuals) in the expression of disgust and pathogen avoidance behaviors; (3) individual and social learning of disgust and empathy for disgust; (4) toxin elicited disgust and anticipatory disgust; (5) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin and estrogenic mechanism associated with social cognition and the expression of disgust. These findings on the social neuroscience of disgust have a direct bearing on our understanding of the roles of disgust in shaping human and nonhuman social behavior.  相似文献   

11.
Due to the omnipresent risk of epidemics, insect societies have evolved sophisticated disease defences at the individual and colony level. An intriguing yet little understood phenomenon is that social contact to pathogen-exposed individuals reduces susceptibility of previously naive nestmates to this pathogen. We tested whether such social immunisation in Lasius ants against the entomopathogenic fungus Metarhizium anisopliae is based on active upregulation of the immune system of nestmates following contact to an infectious individual or passive protection via transfer of immune effectors among group members--that is, active versus passive immunisation. We found no evidence for involvement of passive immunisation via transfer of antimicrobials among colony members. Instead, intensive allogrooming behaviour between naive and pathogen-exposed ants before fungal conidia firmly attached to their cuticle suggested passage of the pathogen from the exposed individuals to their nestmates. By tracing fluorescence-labelled conidia we indeed detected frequent pathogen transfer to the nestmates, where they caused low-level infections as revealed by growth of small numbers of fungal colony forming units from their dissected body content. These infections rarely led to death, but instead promoted an enhanced ability to inhibit fungal growth and an active upregulation of immune genes involved in antifungal defences (defensin and prophenoloxidase, PPO). Contrarily, there was no upregulation of the gene cathepsin L, which is associated with antibacterial and antiviral defences, and we found no increased antibacterial activity of nestmates of fungus-exposed ants. This indicates that social immunisation after fungal exposure is specific, similar to recent findings for individual-level immune priming in invertebrates. Epidemiological modeling further suggests that active social immunisation is adaptive, as it leads to faster elimination of the disease and lower death rates than passive immunisation. Interestingly, humans have also utilised the protective effect of low-level infections to fight smallpox by intentional transfer of low pathogen doses ("variolation" or "inoculation").  相似文献   

12.
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high‐throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long‐term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.  相似文献   

13.
Summary Results of laboratory-based ethological studies on twoNothomyrmecia macrops colonies with individually marked workers are reported. Interactive behavioural acts constituted less than 1% of all those recorded, revealing a strong tendency by the ants not to engage in social contact. Very few workers performed queen-directed acts. They stayed near the queen, though seldom in direct contact. Division of labour was otherwise barely apparent, except that some individuals showed a propensity to guard the nest entrance. No exchange of food was observed between workers, workers and queen, or adults and larvae (apart from worker placement of prey items with larvae). A queen fed from aDrosophila carcass retrieved from the nest floor, without assistance from workers. Systematic scanned observations confirmed levels of inactivity higher than previously observed in ants (comprising almost 2/3 of recorded behavioural acts). The time budget for activities directed toward the immature stages was the same in both colonies, and fluctuated during the circadian period. Non-nestmate larvae added to worker groups were more frequently licked than nestmate larvae, but this might not involve the particular recognition of nestmateversus non-nestmate brood. These observations support the hypothesis thatNothomyrmecia is primitively eusocial, and of special significance in myrmecology.  相似文献   

14.
Queens of hymenopteran social parasites manipulate the workers of other social species into raising their offspring. However, nonconspecific brood care may also allow the parasite larvae to control their own development to a greater extent than possible in nonparasitic species. An evolutionary consequence of this may be the loss of the parasite's worker caste if the larvae can increase their fitness by developing into sexuals rather than workers. We argue that this loss is particularly likely in species in which there is little inclusive fitness benefit in working. Retention of a worker caste correlates with characteristics that increase the fitness of working relative to becoming a sexual, such as worker-production of males, high intracolony relatedness, and seasonal environments where the hosts of potential parasite queens are not always available. Further evidence strongly suggests that when the worker caste is evolutionarily lost in perennial species like ants, it disappears rapidly and through a reduction in caste threshold and queen size, so that parasite larvae become queens with less food than required to produce host workers. This evolutionary process, however, appears to lower overall population fitness, resulting in workerless parasite species having small populations and being geographically restricted. Conversely, in annual species like bees and wasps, workerless social parasitism evolves with no size reduction in queens, which is consistent with an expected lower level of queen/offspring conflict.  相似文献   

15.
Coevolutionary arms races between brood parasites and hosts provide tractable systems for understanding antagonistic coevolution in nature; however, little is known about the fate of frontline antiparasite defenses when the host “wins” the coevolutionary arms race. By recreating bygone species interactions, using artificial parasitism experiments, lingering defensive behaviors that evolved in the context of parasitism can be understood and may even be used to identify the unknown agent of parasitism past. Here we present the first study of this type by evaluating lingering “frontline” nest defenses that have evolved to prevent egg laying in a former brood parasite host. The Australian reed warbler Acrocephalus australis is currently not parasitized but is known to exhibit fine-tuned egg discrimination—a defensive behavior indicative of a past brood parasite–host arms race and common in closely related parasitized species. Here, using 3D-printed models of adult brood parasites, we examined whether the Australian reed warbler also exhibits frontline defenses to adult brood parasites, and whether we could use these defenses to identify the warbler’s “ghost of parasitism past.” Our findings provide evidence that the Australian reed warbler readily engages in frontline defenses that are considered adaptive specifically in the context of brood parasitism. However, individuals were unable to discriminate between adults of different brood parasite species at their nest. Overall, our results demonstrate that despite a relaxation in selection, defenses against brood parasitism can be maintained across multiple stages of the host’s nesting cycle, and further suggest that, in accordance with previous findings, that learning may be important for fine-tuning frontline defense.  相似文献   

16.
Sociality can be associated with significant costs due to the increased risk of disease transmission. However, in some organisms the costs may be offset by benefits due to improvements in defences against parasites. To examine this possible trade-off between infection risk and disease resistance, we used Acromyrmex leaf-cutting ants and the entomopathogenic fungus Metarhizium anisopliae as the model system. Ants exposed to the parasite were found to have substantially improved survival when they were kept with nest-mates, while the cost of being in a group in terms of increased disease transmission was very low. The efficiency of transmission is described by the transmission parameter, which decreased with increasing host density showing that transmission rates are inversely density dependent. Both grooming and antibiotic secretions appeared to be important in resistance against the parasite, with the defences of small workers being particularly effective. The results indicate that leaf-cutting ant colonies may have much greater resistance to disease than would be predicted from the high densities of host individuals within them. Unlike most organisms, group living in these ants may actually be associated with a net benefit in terms of disease dynamics.  相似文献   

17.
本研究在室内模拟自然蚁巢的结构和条件下,使用个体标记和直接观察法对一巢金毛弓背蚁Componotus tonkinus的行为类型和社会分工进行了研究。共34只来自同一巢穴的工蚁被标记。在持续一周的观察过程中对每只蚂蚁所执行的每种行为的频率进行了统计和聚类分析。结果表明:金毛弓背蚁可以区分出12种基本行为类型;该蚂蚁的成员大致可以分为5个功能组, 即繁殖(蚁后1个)、觅食(由10个工蚁组成,主要负责觅食)、巢穴内的维护及护育(由16个工蚁组成,主要负责巢穴的维修、清理及护育)、巢穴的防卫(包括3个工蚁,行巢穴防卫)及不活跃型(含5个工蚁)。  相似文献   

18.
Understanding the determinants of reproductive skew (the partitioning of reproduction among co‐breeding individuals) is one of the major questions in social evolution. In ants, multiple‐queen nests are common and reproductive skew among queens has been shown to vary tremendously both within and between species. Proximate determinants of skew may be related to both queen and worker behaviour. Queens may attempt to change their reproductive share through dominance interactions, egg eating and by changing individual fecundity. Conversely, workers are in a position to regulate the reproductive output of queens when rearing the brood. This paper investigates queen behaviour at the onset of egg laying and the effect of queen fecundity and worker behaviour on brood development and reproductive shares of multiple queens in the ant Formica fusca. The study was conducted in two‐queen laboratory colonies where the queens produced only worker offspring. The results show that in this species reproductive apportionment among queens is not based on dominance behaviour and aggression, but rather on differences in queen fecundity. We also show that, although the queen fecundity at the onset of brood rearing is a good indicator of her final reproductive output, changes in brood composition occur during brood development. Our results highlight the importance of queen fecundity as a major determinant of her reproductive success. They furthermore suggest that in highly derived polygyne species, such as the Formica ants, direct interactions as a means for gaining reproductive dominance have lost their importance.  相似文献   

19.
There is at present considerable variation in the level of antiparasite defences among different host species of avian brood parasites, but in many potential hosts some individuals reject poorly matching parasite eggs. Here we present unique absence of egg discrimination behaviour backed up by a lack of egg recognition abilities in a suitable common cuckoo Cuculus canorus host, the skylark Alauda arvensis. Skylarks did not show any clear rejection response to experimentally added highly non‐mimetic foreign eggs in any behavioural context, even before they had started laying or when the whole clutch was exchanged with foreign eggs. This absence of antiparasite defence can be explained by the breeding habitat of larks consisting of largely treeless open landscapes where cuckoos have little access to the nests, thereby eroding the possibility of coevolutionary interactions. Our results are strikingly consistent with the spatial habitat structure hypothesis proposed to explain the occurrence and extent of avian host‐parasite co‐adaptation.  相似文献   

20.
Flexibility in task performance is essential for a robust system of division of labour. We investigated what factors determine which social insect workers respond to colony-level changes in task demand. We used radio-frequency identification technology to compare the roles of corpulence, age, spatial location and previous activity (intra-nest/extra-nest) in determining whether worker ants (Temnothorax albipennis) respond to an increase in demand for foraging or brood care. The less corpulent ants took on the extra foraging, irrespective of their age, previous activity or location in the nest, supporting a physiological threshold model. We found no relationship between ants that tended the extra brood and corpulence, age, spatial location or previous activity, but ants that transported the extra brood to the main brood pile were less corpulent and had high previous intra-nest activity. This supports spatial task-encounter and physiological threshold models for brood transport. Our data suggest a flexible task-allocation system allowing the colony to respond rapidly to changing needs, using a simple task-encounter system for generalized tasks, combined with physiologically based response thresholds for more specialized tasks. This could provide a social insect colony with a robust division of labour, flexibly allocating the workforce in response to current needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号