首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of bovine prothrombin with Ca2+ and Mg2+ ions was investigated by following H+ release as a function of metal ion concentration at pH 6 and pH 7.4 at high and low ionic strength. Prothrombin Ca2+ and Mg2+ binding is characterized by high- and low-affinity sites. M2+ binding at these sites is associated with intramolecular conformational changes and also with intermolecular self-association. The pH dependence of H+ release by M2+ is bell shaped and consistent with controlling pKa values of 4.8 and 6.5. At pH 6 and low ionic strength, both Ca2+ and Mg2+ titrations following H+ release clearly show independent low- and high-affinity binding sites. Laser light scattering reveals that at pH 7.4 and low ionic strength, and at pH 6.0 and high ionic strength, the prothrombin molecular weight is between 73 and 98 kD. At pH 7.4 and high ionic strength, prothrombin is monomeric in the absence of metal ions, but appears to dimerize in the presence of M2+. At pH 6.0 and low ionic strength prothrombin exists as a dimer in the absence of metal ions and is tetrameric in the presence of Ca2+ and remains dimeric in the presence of Mg2+. These results and those for metal ion-dependent H+ release indicate that H+ release occurs concomitantly with association processes involving prothrombin.Abbreviations GLA -carboxyglutamic acid; fragment 1. amino terminal residues 1–156 of bovine prothrombin - MES 2-(N-morpholino) ethanesulfonic acid - MOPS 3-(N-morpholino) propanesulfonic acid - PS/PC phosphatidylserine/phosphatidylcholine vesicles - ionic strength  相似文献   

2.
Calcium binding in proteins exhibits a wide range of polygonal geometries that relate directly to an equally diverse set of biological functions. The binding process stabilizes protein structures and typically results in local conformational change and/or global restructuring of the backbone. Previously, we established the MUG program, which utilized multiple geometries in the Ca2+‐binding pockets of holoproteins to identify such pockets, ignoring possible Ca2+‐induced conformational change. In this article, we first report our progress in the analysis of Ca2+‐induced conformational changes followed by improved prediction of Ca2+‐binding sites in the large group of Ca2+‐binding proteins that exhibit only localized conformational changes. The MUGSR algorithm was devised to incorporate side chain torsional rotation as a predictor. The output from MUGSR presents groups of residues where each group, typically containing two to five residues, is a potential binding pocket. MUGSR was applied to both X‐ray apo structures and NMR holo structures, which did not use calcium distance constraints in structure calculations. Predicted pockets were validated by comparison with homologous holo structures. Defining a “correct hit” as a group of residues containing at least two true ligand residues, the sensitivity was at least 90%; whereas for a “correct hit” defined as a group of residues containing at least three true ligand residues, the sensitivity was at least 78%. These data suggest that Ca2+‐binding pockets are at least partially prepositioned to chelate the ion in the apo form of the protein.  相似文献   

3.
An equimolar mixture of phosphatidylserine and (dioleoyl)phosphatidylethanolamine could substitute for brain cephalin preparations in the single stage prothrombin assay. However, no clot promoting activity was observed on the addition of any of the individual long chain fatty acid-containing phospholipids. Short chain fatty acid-containing phospholipids, such as diheptanoylphosphatidylcholine, diheptanoylphosphatidylethanolamine, diheptanoylphosphatidic acid, and dihexanoylphosphatidylcholine, or dihexanoylphosphatidylethanolamine were inhibitory under all conditions studied. Similar effects of these two general classes of phospholipids were observed in a two-stage thrombin generation system, in which a mixture of bovine Factor Xa, Factor Va, and Ca2+ were interacted with prothrombin.In the presence of 25 mM Ca2+, dioleoylphosphatidic acid or brain phosphatidylserine alone, and with other long chain phospholipids, formed complexes with bovine plasma prothrombin. On the other hand, dioleoyl-, diheptanoyl- or dihexanoylphosphatidylcholine under comparable conditions showed no binding to prothrombin. There appeared to be a small degree of binding of diheptanoylphosphatidic acid to prothrombin, but it was insufficient to cause any significant change in apparent molecular weight of prothrombin. A mixture of prothrombin, Factor V, diheptanoylphosphatidic acid/diheptanoylphosphatidylcholine and Ca2+ eluted in the void volume of Sephadex G-200, but showed a much reduced coagulant activity. Though a net negative charge on the phospholipid surface is required for phospholipid-protein interactions, this does not necessarily promote coagulant activity.Bile acids and bile salts, such as cholic acid, deoxycholic acid, taurocholic acid, glycocholic acid, lithocholic acid and dehydrocholic acid, exerted varying levels of stimulation on the prothrombin assay and thrombin generation system, but were not as effective as the phospholipids. Interestingly, no interaction of these bile acids or salts with prothrombin was noted in the presence of Ca2+. The results of these experiments suggest that negatively charged micelles per se are not sufficient for binding alone and that other chemical and physical characteristics of phospholipids are of prime importance.  相似文献   

4.
Previous studies showed that binding of water-soluble phosphatidylserine (C6PS) to bovine factor Xa (FXa) leads to Ca2+-dependent dimerization in solution. We report the effects of Ca2+, C6PS, and dimerization on the activity and structure of human and bovine FXa. Both human and bovine dimers are 106- to 107-fold less active toward prothrombin than the monomer, with the decrease being attributed mainly to a substantial decrease in kcat. Dimerization appears not to block the active site, since amidolytic activity toward a synthetic substrate is largely unaffected. Circular dichroism reveals a substantial change in tertiary or quaternary structure with a concomitant decrease in α-helix upon dimerization. Mass spectrometry identifies a lysine (K270) in the catalytic domain that appears to be buried at the dimer interface and is part of a synthetic peptide sequence reported to interfere with factor Va (FVa) binding. C6PS binding exposes K351 (part of a reported FVa binding region), K242 (adjacent to the catalytic triad), and K420 (part of a substrate exosite). We interpret our results to mean that C6PS-induced dimerization produces substantial conformational changes or domain rearrangements such that structural data on PS-activated FXa is required to understand the structure of the FXa dimer or the FXa-FVa complex.  相似文献   

5.
Abstract— It has been reported that myelin basic protein (MBP) forms a specific complex with S-100 protein in the presence of either Ca2+ or Mn2+, as detected by Immunoelectrophoresis. We have now studied the binding of Ca2+ and Mn2+ to these two proteins. We find that MBP binds 1 mol of Mn2+/mol of protein, and this binding produces an increment in its fluorescence, indicating a conformational change. Ca2+ does not bind to MBP nor does it affect the fluorescence of MBP. S-100 protein, as has been reported, binds about 10 mol of Ca2+/mol and this binding produces a conformational change. S-100 protein also has 25 binding sites for Mn2+, but this binding does not alter fluorescence and does not appear to affect conformation. Competitive binding experiments demonstrate that the binding sites of S-100 protein for Ca2+ and Mn2+ are independent. The alteration of electrophoretic migration in gels of S-100 protein produced by Ca2+ and of MBP produced by Mn2+ are in accord with the observations based on fluorescence. Mn2+ does not affect the electrophoretic mobility of S-100. These results indicate that the formation of the complex between MBP and S-100 protein in the presence of either Ca2+ or Mn2+ is due to the conformational change induced by these ions in S-100 protein, MBP, or both.  相似文献   

6.
Thermodynamic parameters for the unfolding of as well as for the binding of Ca2+ to goat α-lactalbumin (GLA) and bovine α-lactalbumin (BLA) are deduced from isothermal titration calorimetry in a buffer containing 10 mM Tris-HCl, pH 7.5 near 25°C. Among the different parameters available, the heat capacity increments (ΔCp) offer the most direct information for the associated conformational changes of the protein variants. The ΔCp values for the transition from the native to the molten globule state are rather similar for both proteins, indicating that the extent of the corresponding conformational change is nearly identical. However, the respective ΔCp values for the binding of Ca2+ are clearly different. The data suggest that a distinct protein region is more sensitive to a Ca2+-dependent conformational change in BLA than is the case in GLA. By analysis of the tertiary structure we observed an extensive accumulation of negatively charged amino acids near the Ca2+-binding site of BLA. In GLA, the cluster of negative charges is reduced by the substitution of Glu-11 by Lys. The observed difference in ΔCp values for the binding of Ca2+ is presumably in part related to this difference in charge distribution.  相似文献   

7.
Calmodulin (CaM) is a Ca2+‐binding protein that regulates a number of fundamental cellular activities. Nicotiana tabacum CaM (NtCaM) comprises 13 genes classified into three types, among which gene expression and target enzyme activation differ. We performed Fourier‐transform infrared spectroscopy to compare the secondary and coordination structures of Mg2+ and Ca2+ among NtCaM1, NtCaM3, and NtCaM13 as representatives of the three types of NtCaMs. Data suggested that NtCaM13 has a different secondary structure due to the weak β‐strand bands and the weak 1661 cm?1 band. Coordination structures of Mg2+ of NtCaM3 and NtCaM13 were similar but different from that of NtCaM1, while the Ca2+‐binding manner was similar among the three CaMs. The amplitude differences of the band at 1554–1550 cm?1 obtained by second‐derivative spectra indicated that the intensity change of the band of NtCaM13 was smaller in response to [Ca2+] increases under low [Ca2+] conditions than were those of NtCaM1 and NtCaM3, while the intensity reached the same level under high [Ca2+]. Therefore, NtCaM13 has a characteristic secondary structure and specific Mg2+‐binding manner and needs higher [Ca2+] for bidentate Ca2+ coordination of 12th Glu in EF‐hand motifs. The Ca2+‐binding mechanisms of the EF‐hand motifs of the three CaMs are similar; however, the cation‐dependent conformational change in NtCaM13 is unique among the three NtCaMs. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 472–483, 2013.  相似文献   

8.
Conformational changes in the skeletal troponin complex (sTn) induced by rapidly increasing or decreasing the [Ca2+] were probed by 5-iodoacetamidofluorescein covalently bound to Cys-133 of skeletal troponin I (sTnI). Kinetics of conformational changes was determined for the isolated complex and after incorporating the complex into rabbit psoas myofibrils. Isolated and incorporated sTn exhibited biphasic Ca2+-activation kinetics. Whereas the fast phase (kobs∼1000 s−1) is only observed in this study, where kinetics were induced by Ca2+, the slower phase resembles the monophasic kinetics of sTnI switching observed in another study (Brenner and Chalovich. 1999. Biophys. J. 77:2692–2708) that investigated the sTnI switching induced by releasing the feedback of force-generating cross-bridges on thin filament activation. Therefore, the slower conformational change likely reflects the sTnI switch that regulates force development. Modeling reveals that the fast conformational change can occur after the first Ca2+ ion binds to skeletal troponin C (sTnC), whereas the slower change requires Ca2+ binding to both regulatory sites of sTnC. Incorporating sTn into myofibrils increased the off-rate and lowered the Ca2+ sensitivity of sTnI switching. Comparison of switch-off kinetics with myofibril force relaxation kinetics measured in a mechanical setup indicates that sTnI switching might limit the rate of fast skeletal muscle relaxation.  相似文献   

9.
Effects of Ca2+ on the activity and stability of methanol dehydrogenase   总被引:1,自引:0,他引:1  
The effects of exogenously added Ca2+ on the enzymatic activity and structural stability of methanol dehydrogenase were studied for various Ca2+ concentrations. Methanol dehydrogenase activity increased significantly with increasing concentration of Ca2+, approaching saturation at 200 mM Ca2+. The effect of Ca2+ on the activation of MDH was time dependent and Ca2+ specific and was due to binding of the metal ions to the enzyme. Addition of increasing concentration of Ca2+ caused a decrease of the intrinsic tryptophan fluorescence intensity in a concentration-dependent manner to a minimum at 200 mM, but with no change in the fluorescence emission maximum wavelength or the CD spectra. The results revealed that the activation of methanol dehydrogenase by Ca2+ occurred concurrently with the conformational change. In addition, exogenously bound Ca2+ destabilized MDH. The potential biological significance of these results is discussed.  相似文献   

10.
Metal ion activation of saccharide binding has been studied for concana-valin A near pH 7.0. Although two metal ions, a transition metal ion and a Ca2+ ion, can bind, both are not required. Ca2+ alone, Mn2+ alone, or Ca2+ with other transition metal ions can activate this lectin. Only one Ca2+ ion per subunit or only one Mn2+ per subunit is sufficient. Metal ion binding was studied by magnetic resonance techniques and direct binding assays. Saccharide binding activity was monitored by following the fluorescence of 4-methylumbelliferyl a-D-mannopyranoside. When Ca2+ binds to demetalized concanavalin A, the transition metal ion site is hindered. When Mn2+ alone binds to demetalized concanavalin A, saccharide binding activity is induced. A subsequent conformational change, not necessary for carbohydrate binding activity, covers the Mn2+.  相似文献   

11.
The binding isotherm of Ca2+ to bovine coagulation Factor VII has been examined at 25°C, and pH 7.4, by equilibrium ultrafiltration. The simplest model which describes the nonlinear isotherm obtained assumes that two strong Ca2+ sites exist, with an average KD of 0.1 ± 0.04 mm, and at least four weaker sites, with an average KD of 1.7 ± 0.3 mm. Concomitant with Ca2+ interaction, the intrinsic steady state fluorescence of bovine Factor VII decreases. Approximately 80% of the total fluorescence alteration occurs as a consequence of saturation of the two strong Ca2+ sites. The remainder of the fluorescence decrease takes place upon the total binding of three to four Ca2+ sites. This result indicates that an alteration in the environment of a tryptophan residue(s) occurs upon binding of Ca2+ to bovine Factor VII.  相似文献   

12.
Anticoagulation factor I (ACF I) from the venom of Agkistrodon acutus forms a 1:1 complex with activated coagulation factor X (FXa) in a Ca2+-dependent fashion and thereby prolongs the clotting time. In the present study, the dependence of the binding of ACF I with FXa on the concentration of Ca2+ ions was quantitatively analyzed by HPLC, and the result showed that the maximal binding of ACF I to FXa occurred at concentration of Ca2+ ions of about 1 mM. The binding of Ca2+ ions to ACF I was investigated by equilibrium dialysis and two Ca2+-binding sites with different affinities were identified. At pH 7.6, the apparent association constants K1 and K2 for these two sites were (1.8 ± 0.5) × 105 and (2.7 ± 0.6) × 104 M–1 (mean ± SE, n = 4), respectively. It was evident from the observation of Ca2+-induced changes in the intrinsic fluorescence of ACF I that ACF I underwent a conformational change upon binding of Ca2+ ions. The occupation of both Ca2+-binding sites in ACF I required a concentration of Ca2+ ions of about 1 mM, which is equal to the effective concentration of Ca2+ ions required both for maximal binding of ACF I to FXa and for the maximal enhancement of emission fluorescence of ACF I. It could be deduced from these results that the occupation of both Ca2+-binding sites in ACF I with Ca2+ ions and subsequent conformational rearrangement might be essential for the binding of ACF I to FXa.  相似文献   

13.
The interactions between Ca2+ and C-reactive protein (CRP) have been characterized using a surface plasmon resonance (SPR) biosensor. The protein was immobilized on a sensor chip, and increasing concentrations of Ca2+ or phosphocholine were injected. Binding of Ca2+ induced a 10-fold higher signal than expected from the molecular weight of Ca2+. It was interpreted to result from the conformational change that occurs on binding of Ca2+. Two sites with different characteristics were distinguished: a high-affinity site with KD = 0.03 mM and a low-affinity site with KD = 5.45 mM. The pH dependencies of the two Ca2+ interactions were different and enabled the assignment of the different sites in the three-dimensional structure of CRP. There was no evidence for cooperativity in the phosphocholine interaction, which had KD = 5 μM at 10 mM Ca2+. SPR biosensors can clearly detect and quantify the binding of very small molecules or ions to immobilized proteins despite the theoretically very low signals expected on binding, provided that significant conformational changes are involved. Both the interactions and the conformational changes can be characterized. The data have important implications for the understanding of the function of CRP and suggest that Ca2+ is an efficient regulator under physiological conditions.  相似文献   

14.
In eukaryotic Na+/Ca2+ exchangers (NCX) the Ca2+ binding CBD1 and CBD2 domains form a two-domain regulatory tandem (CBD12). An allosteric Ca2+ sensor (Ca3–Ca4 sites) is located on CBD1, whereas CBD2 contains a splice-variant segment. Recently, a Ca2+-driven interdomain switch has been described, albeit how it couples Ca2+ binding with signal propagation remains unclear. To resolve the dynamic features of Ca2+-induced conformational transitions we analyze here distinct splice variants and mutants of isolated CBD12 at varying temperatures by using small angle x-ray scattering (SAXS) and equilibrium 45Ca2+ binding assays. The ensemble optimization method SAXS analysis demonstrates that the apo and Mg2+-bound forms of CBD12 are highly flexible, whereas Ca2+ binding to the Ca3–Ca4 sites results in a population shift of conformational landscape to more rigidified states. Population shift occurs even under conditions in which no effect of Ca2+ is observed on the globally derived Dmax (maximal interatomic distance), although under comparable conditions a normal [Ca2+]-dependent allosteric regulation occurs. Low affinity sites (Ca1–Ca2) of CBD1 do not contribute to Ca2+-induced population shift, but the occupancy of these sites by 1 mm Mg2+ shifts the Ca2+ affinity (Kd) at the neighboring Ca3–Ca4 sites from ∼ 50 nm to ∼ 200 nm and thus, keeps the primary Ca2+ sensor (Ca3–Ca4 sites) within a physiological range. Thus, Ca2+ binding to the Ca3–Ca4 sites results in a population shift, where more constraint conformational states become highly populated at dynamic equilibrium in the absence of global conformational transitions in CBD alignment.  相似文献   

15.
Tubulointerstitial nephritis is a cardinal renal manifestation of leptospirosis. LipL32, a major lipoprotein and a virulence factor, locates on the outer membrane of the pathogen Leptospira. It evades immune response by recognizing and adhering to extracellular matrix components of the host cell. The crystal structure of Ca2+-bound LipL32 was determined at 2.3 Å resolution. LipL32 has a novel polyD sequence of seven aspartates that forms a continuous acidic surface patch for Ca2+ binding. A significant conformational change was observed for the Ca2+-bound form of LipL32. Calcium binding to LipL32 was determined by isothermal titration calorimetry. The binding of fibronectin to LipL32 was observed by Stains-all CD and enzyme-linked immunosorbent assay experiments. The interaction between LipL32 and fibronectin might be associated with Ca2+ binding. Based on the crystal structure of Ca2+-bound LipL32 and the Stains-all results, fibronectin probably binds near the polyD region on LipL32. Ca2+ binding to LipL32 might be important for Leptospira to interact with the extracellular matrix of the host cell.  相似文献   

16.
The large enhancement of the green luminescence of terbium ion which occurs on binding to porcine and bovine trypsins and to bovine α-chymotrypsin has been used to study the calcium binding sites of these enzymes. Excitation spectra, taken at low protein concentrations to minimize absorption effects, demonstrate that in each case, energy transfer occurs between the side chain of a tryptophan residue and bound Tb3+. Association constants for the binding of Tb3+ to the single binding site on each of the three proteins have been measured at 25 °C and pH 6.6. Ca2+ ions compete with Tb3+ for the single binding site, and association constants for Ca2+ were determined by Tb3+ displacement. The ratio of binding strengths of Ca2+ to α-chymotrypsin, bovine trypsin, porcine trypsin, and elastase is 1:12:24:23. Addition of Tb3+ to the homologous bacterial enzyme α-lytic protease caused no luminescence enhancement.  相似文献   

17.
The inhibition of ion transporting ATPases (Na+,K+-ATPase, Ca2+,Mg2+- and Ca2+-ATPase) by two amphiphilic drugs e.g. chlorpromazine (antipsychotic) and chloroquine (antimalarial) are found to be competitive in nature in vitro with respect to the substrate. Two binding sites - high and low affinity are found to exist on all the three ATPases toward these drugs as evident from the plot of F/F0 vs. different drug concentrations of tryptophan fluorescence of the enzymes. Circular dichroism analysis suggest that binding of drugs to the high affinity site does not involve any change in conformation of ATPase molecules which occur only when drug binds to the low affinity sites. The drug binding sites and possible effect on conformational change of ATPase molecules of these two drugs have been described in this report.  相似文献   

18.
Voltage-gated calcium channels (VGCC) are involved in a large variety of cellular Ca2+ signaling processes, including exocytosis, a Ca2+ dependent release of neurotransmitters and hormones.Great progress has been made in understanding the mode of action of VGCC in exocytosis, a process distinguished by two sequential yet independent Ca2+ binding reactions. First, Ca2+ binds at the selectivity filter, the EEEE motif of the VGCC, and second, subsequent to a brief and intense Ca2+ inflow to synaptotagmin, a vesicular protein. Inquiry into the functional and physical interactions of the channels with synaptic proteins has demonstrated that exocytosis is triggered during the initial Ca2+ binding at the channel pore, prior to Ca2+ entry. Accordingly, a cycle of secretion begins by an incoming stimulus that releases vesicles from a releasable pool upon Ca2+ binding at the pore, and at the same time, the transient increase in [Ca2+]i primes a fresh set of non-releasable vesicles, to be fused by the next incoming stimulus.We propose a model, in which the Ca2+ binding at the EEEE motif and the consequent conformational changes in the channel are the primary event in triggering secretion, while synaptotagmin acts as a vesicle docking protein. Thus, the channel serves as the molecular On/Off signaling switch, where the predominance of a conformational change in Ca2+-bound channel provides for the fast secretory process.  相似文献   

19.
Phospholipase A2 (PLA2) from Naja naja atra (Taiwan cobra) snake venom was subjected to lysine modification with trinitrobenzene sulfonate (TNBS). Three major derivatives, TNP-1, TNP-2, and TNP-3, were separated by high-performance liquid chromatography (HPLC) from the reaction mixtures in the absence of Ca2+. However, only TNP-2 and TNP-3 were isolated when trinitrophenylated reaction was carried out in the presence of Ca2+. TNP-1 and TNP-2 contained only one TNP group, on Lys-65 and Lys-6, respectively; and both Lys-6 and Lys-65 were modified in TNP-3. The extent of modification on Lys-6 and Lys-65 was calculated from the peak areas of TNP proteins in the HPLC profile. It was found that the susceptibility of Lys-6 toward TNBS markedly increased by the addition of Ca2+ when Ca2+ concentration was higher than 5 mM. With regard to the involvement of Lys-6 in the binding of substrate, the increase in the reactivity of Lys-6 may arise from a conformational change around Lys-6 for binding with substrate in the presence of Ca2+. Alternatively, the nonessentiality of Lys-65 for PLA2 activity was revealed by the finding that TNP-1 still retained 95% activity of native enzyme. Moreover, the reactivity of Lys-65 toward TNBS did not greatly change in either the absence or presence of Ca2+, suggesting that Ca2+ binding did not cause an appreciable change in the microenvironment around Lys-65. These results indicate that the differential reactivities of Lys-6 and Lys-65 toward TNBS as affected by the binding of Ca2+ are well consistent with their functional roles in the catalytic mechanism of PLA2, and suggest that the occurrence of conformational changes with PLA2 could be explored by chemical modification studies.  相似文献   

20.
Phospholipase A2 (PLA2) from Naja naja atra (Taiwan cobra) snake venom was subjected to lysine modification with trinitrobenzene sulfonate (TNBS). Three major derivatives, TNP-1, TNP-2, and TNP-3, were separated by high-performance liquid chromatography (HPLC) from the reaction mixtures in the absence of Ca2+. However, only TNP-2 and TNP-3 were isolated when trinitrophenylated reaction was carried out in the presence of Ca2+. TNP-1 and TNP-2 contained only one TNP group, on Lys-65 and Lys-6, respectively; and both Lys-6 and Lys-65 were modified in TNP-3. The extent of modification on Lys-6 and Lys-65 was calculated from the peak areas of TNP proteins in the HPLC profile. It was found that the susceptibility of Lys-6 toward TNBS markedly increased by the addition of Ca2+ when Ca2+ concentration was higher than 5 mM. With regard to the involvement of Lys-6 in the binding of substrate, the increase in the reactivity of Lys-6 may arise from a conformational change around Lys-6 for binding with substrate in the presence of Ca2+. Alternatively, the nonessentiality of Lys-65 for PLA2 activity was revealed by the finding that TNP-1 still retained 95% activity of native enzyme. Moreover, the reactivity of Lys-65 toward TNBS did not greatly change in either the absence or presence of Ca2+, suggesting that Ca2+ binding did not cause an appreciable change in the microenvironment around Lys-65. These results indicate that the differential reactivities of Lys-6 and Lys-65 toward TNBS as affected by the binding of Ca2+ are well consistent with their functional roles in the catalytic mechanism of PLA2, and suggest that the occurrence of conformational changes with PLA2 could be explored by chemical modification studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号