首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yp20 is a 20kD protein whose role is still obscure which copurifies with yeast histones. Yeast histones were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to nitrocellulose. Incubation of the nitrocellulose blots with [gamma-35S] GTP gamma S demonstrated that Yp20 is a GTP binding protein. A polyclonal antiserum raised against purified Yp20 cross reacted with bacterially expressed cHras and T24 Hras genuine ras products. The results obtained suggest that Yp20 is a yeast chromatin associated ras-related antigen.  相似文献   

2.
3.
HMG-D is an abundant chromosomal protein associated with condensed chromatin during the first nuclear cleavage cycles of the developing Drosophila embryo. We previously suggested that HMG-D might substitute for the linker histone H1 in the preblastoderm embryo and that this substitution might result in the characteristic less compacted chromatin. We have now studied the association of HMG-D with chromatin using a cell-free system for chromatin reconstitution derived from Drosophila embryos. Association of HMG-D with chromatin, like that of histone H1, increases the nucleosome spacing indicative of binding to the linker DNA between nucleosomes. HMG-D interacts with DNA during the early phases of nucleosome assembly but is gradually displaced as chromatin matures. By contrast, purified chromatin can be loaded with stoichiometric amounts of HMG-D, and this can be displaced upon addition of histone H1. A direct physical interaction between HMG-D and histone H1 was observed in a Far Western analysis. The competitive nature of this interaction is reminiscent of the apparent replacement of HMG-D by H1 during mid-blastula transition. These data are consistent with the hypothesis that HMG-D functions as a specialized linker protein prior to appearance of histone H1.  相似文献   

4.
The genomes of the related crenarchaea Pyrobaculum aerophilum and Thermoproteus tenax lack any obvious gene encoding a single-stranded DNA binding protein (SSB). SSBs are essential for DNA replication, recombination, and repair and are found in all other genomes across the three domains of life. These two archaeal genomes also have only one identifiable gene encoding a chromatin protein (the Alba protein), while most other archaea have at least two different abundant chromatin proteins. We performed a biochemical screen for novel nucleic acid binding proteins present in cell extracts of T. tenax. An assay for proteins capable of binding to a single-stranded DNA oligonucleotide resulted in identification of three proteins. The first protein, Alba, has been shown previously to bind single-stranded DNA as well as duplex DNA. The two other proteins, which we designated CC1 (for crenarchaeal chromatin protein 1), are very closely related to one another, and homologs are restricted to the P. aerophilum and Aeropyrum pernix genomes. CC1 is a 6-kDa, monomeric, basic protein that is expressed at a high level in T. tenax. This protein binds single- and double-stranded DNAs with similar affinities. These properties are consistent with a role for CC1 as a crenarchaeal chromatin protein.  相似文献   

5.
6.
The protein DEK is an abundant and ubiquitous chromatin protein in multicellular organisms (not in yeast). It is expressed in more than a million copies/nucleus of rapidly proliferating mammalian cells. DEK has two DNA binding modules of which one includes a SAP box, a sequence motif that DEK shares with a number of other chromatin proteins. DEK has no apparent affinity to specific DNA sequences, but preferentially binds to superhelical and cruciform DNA, and induces positive supercoils into closed circular DNA. The available evidence strongly suggests that DEK could function as an architectural protein in chromatin comparable to the better known classic architectural chromatin proteins, the high-mobility group or HMG proteins.  相似文献   

7.
Matrix/scaffold attachment regions (MARs/SARs) partition chromatin into functional loop domains. Here we have identified a chicken protein that selectively binds to MARs from the chicken lysozyme locus and to MARs from Drosophila, mouse, and human genes. This protein, named ARBP (for attachment region binding protein), was purified to homogeneity and shown to bind to MARs in a cooperative fashion. ARBP is an abundant nuclear protein and a component of the internal nuclear network. Deletion mutants indicate that multiple AT-rich sequences, if contained in a minimal approximately 350 bp MAR fragment, can lead to efficient binding of ARBP. Furthermore, dimerization mutants show that, to bind ARBP efficiently, MAR sequences can act synergistically over large distances, apparently with the intervening DNA looping out. The binding characteristics of ARBP to MARs reproduce those of unfractionated matrix preparations, suggesting that ARBP is an important nuclear element for the generation of functional chromatin loops.  相似文献   

8.
The specific, high-affinity binding of the avian oviduct progesterone receptor (PR) with target-cell nuclei and chromatin has been shown to involve DNA complexed with specific chromatin acceptor proteins. One of these chromatin acceptor proteins has been partially purified and found to be a small hydrophobic protein with a broad pI of 5.0-6.0 [Goldberger, A., & Spelsberg, T. C., (1988) Biochemistry 27, 2103-2109]. This paper describes the final purification over 100,000-fold to apparent homogeneity of this candidate PR acceptor protein, termed the receptor binding factor 1 (RBF-1). When the avian genomic DNA is bound by RBF-1, saturable, high-affinity (KD approximately 2 x 10(-9) M) binding sites for PR are generated. RBF-1 has a unique, hydrophobic N-terminal sequence. The PR binding to the RBF-1-DNA complexes is shown to be dependent on an intact activated PR with which excess nonradiolabeled PR can compete. By use of a new, highly specific monoclonal antibody (mAb) to the RBF-1 with Western immunoblotting, RBF-1 was shown to be localized in the nucleus and to be tissue and species specific. Selective removal of the chromatin proteins containing RBF-1 results in the loss of the highest affinity class of PR binding sites. A second class of residual PR binding sites remains in the nucleoacidic protein (NAP), a complex of proteins more tightly bound to the DNA. This class of PR binding activity has been classified as the RBF-2. The RBF-1 is estimated to be 0.03% of the total chromatin protein with about 1.2 x 10(5) molecules/diploid cell.  相似文献   

9.
Although the IgJ enhancer chromatin is induced open by an IL-2/Stat5 signaling during terminal B cell differentiation, the opened chromatin of IgJ enhancer is then maintained in the absence of IL-2/Stat5 signaling. Nevertheless, the sequence overlapping the Stat5 site was shown still to be essential for the function of IgJ enhancer in the plasma cells. An in vivo footprint was identified over the Stat5-overlapping site, indicating that the site should be bound by a certain other protein than Stat5. In EMSA using the Stat5-overlapping sequence as a probe, its specific binding protein was identified. The specific binding protein corresponded neither to any of other Stat family proteins, nor to any of potential candidate proteins as tested in EMSA using their corresponding oligo DNA competitors and antibodies. Although its identity remains to be found by its purification, the protein binding specifically to the Stat5-overlapping site was shown to be expressed rather ubiquitously in B and non-B cells, and its molecular weight appeared to be below 52 kDa as determined in the UV-crosslinking-coupled SDS-PAGE.  相似文献   

10.
11.
DEK is an abundant chromatin protein in metazoans reaching copy numbers of several millions/nucleus. Previous work has shown that human DEK, a protein of 375 amino acids, has two functional DNA-binding domains, of which one resides in a central part of the molecule and contains sequences corresponding to the scaffold attachment factor-box (SAF-box) domain as found in a growing number of nuclear proteins. Isolated SAF-box peptides (amino acids 137–187) bind weakly to DNA in solution, but when many SAF-box peptides are brought into close proximity on the surface of Sephadex beads, cooperative effects lead to a high affinity to DNA. Furthermore, a peptide (amino acids 87–187) that includes a sequence on the N-terminal side of the SAF-box binds efficiently to DNA. This peptide prefers four-way junction DNA over straight DNA and induces supercoils in relaxed circular DNA just like the full-length DEK. Interestingly, however, the 87–187 amino acid peptide introduces negative supercoils in contrast to the full-length DEK, which is known to introduce positive supercoils. We found that two adjacent regions (amino acids 68–87 and 187–250) are necessary for the formation of positive supercoils. Our data contribute to the ongoing characterization of the abundant and ubiquitous DEK chromatin protein.  相似文献   

12.
13.
We previously demonstrated the presence of three forms of vitellogenin (Vg), two 600 kDa Vgs (600Vg; VgA and VgB) and a 400 kDa Vg (400Vg; phosvitinless Vg) in plasma from maturing female viviparous mosquitofish, Gambusia affinis. For further quantitative elucidation of the accumulation and utilization of the multiple Vg-derived yolk proteins, two sandwich enzyme-linked immunosorbent assays (ELISA) were developed using antisera against 600Vgs and a 400 kDa yolk protein (400Yp; derived from 400Vg), respectively. Contents of 560 kDa yolk protein (560Yp; lipovitellins derived from 600Vg) and 400Yp measured by the ELISAs increased in accordance with the growth of vitellogenic oocytes, keeping their proportional ratio (mol/mol) at about 4:1. A similar ratio obtained for plasma Vgs suggests that the proportional accumulation of the multiple Vg-derived yolk proteins is regulated by the hepatic synthesis and secretion of their precursor Vgs. When egg homogenate was analyzed by gel chromatography, three peaks, consisting of 560Yp, 400Yp and 28 kDa native beta'-component, were observed. The elution profile showed no change until embryos reached the early neurula stage, however, the relative height of the 560Yp peak as compared to the 400Yp one decreased after retinal pigmentation. Results from measurements of 560Yp and 400Yp at each embryonic stage supported the occurrence of unequal utilization of the two yolk proteins. The proportional ratios (mol/mol) of 560Yp content versus 400Yp content gradually decreased from 4.1 fold in early neurula embryo to 1.4 fold in larva just before parturition. The present study thus demonstrated unequal utilization of the multiple Vg-derived yolk proteins in developing embryos of mosquitofish.  相似文献   

14.
We have investigated the molecular mechanism by which the proto-oncogene protein DEK, an abundant chromatin-associated protein, changes the topology of DNA in chromatin in vitro. Band-shift assays and electron microscopy revealed that DEK induces both intra- and intermolecular interactions between DNA molecules. Binding of the DEK protein introduces constrained positive supercoils both into protein-free DNA and into DNA in chromatin. The induced change in topology is reversible after removal of the DEK protein. As shown by sedimentation analysis and electron microscopy, the DEK-induced positive supercoiling causes distinct structural changes of DNA and chromatin. The observed direct effects of DEK on chromatin folding help to understand the function that this major chromatin protein performs in the nucleus.  相似文献   

15.
It has been reported that chromatin assembly in mammalian cell extracts depends exclusively or preferentially on ongoing DNA replication (Stillman, B. (1986) Cell 45, 555-565). More recently, this view has been challenged demonstrating that, in the same extracts, chromatin can also be formed efficiently in the absence of DNA replication (Gruss et al. (1990) EMBO J. 9, 2911-2922). The experiments, described in this communication, were performed to resolve this apparent contradiction. We found that there are at least two distinct in vitro pathways for chromatin assembly in HeLa cell extracts. The replicative pathway requires a nuclear protein, most likely identical with the chromatin assembly factor, described by Stillman (1986, Cell 45, 555-565), and the free soluble histones present in the cytosol of S phase cells. In contrast, a non-replicative pathway was identified that depends on isolated nuclear histones. As one component of the non-replicative assembly pathway we identified a cytosolic factor that was purified to apparent homogeneity and shown to be an acidic 50 kDa polypeptide. The isolated cytosolic 50 kDa protein efficiently promoted nucleosome assembly as demonstrated by one- and two-dimensional gel electrophoresis of in vitro packaged plasmid DNA.  相似文献   

16.
We have studied the binding of the tumor antigen (T-antigen) of simian virus 40 to simian virus 40 chromatin (minichromosomes). The minichromosomes isolated from infected cells by a modification of standard techniques were relatively free of contaminating RNA and cellular DNA and had a ratio (by weight) of protein to DNA of approximately 1; their DNA was 50 to 60% digestible to an acid-soluble form by staphylococcal nuclease. Cleavage of this chromatin with restriction endonucleases indicated that the nuclease-resistant regions were randomly distributed in the population of minichromosomes, but were not randomly distributed within minichromosomes. Only 20 to 35% of these minichromosomes adsorbed nonspecifically to nitrocellulose filters, permitting binding studies between simian virus 40 T-antigen and chromatin to be performed. Approximately two to three times as much T-antigen was required to bind chromatin as to bind an equivalent amount of free DNA. When T-antigen was present in excess, both chromatin and free DNA were quantitatively retained on the filters. On the other hand, when DNA or chromatin was present in excess, only one-third as much chromatin as DNA was retained. We suggest that T-antigen-chromatin complexes may be formed by the cooperative binding of T-antigen to chromatin, whereas T-antigen-DNA complexes may be formed by simple bimolecular interactions.  相似文献   

17.
18.
The binding of the prereplication complex proteins Orc1, Orc2, Mcm3, Mcm7, and Cdc6 and the novel DNA unwinding element (DUE) binding protein DUE-B to the endogenous human c-myc replicator was studied by chromatin immunoprecipitation. In G(1)-arrested HeLa cells, Mcm3, Mcm7, and DUE-B were prominent near the DUE, while Orc1 and Orc2 were least abundant near the DUE and more abundant at flanking sites. Cdc6 binding mirrored that of Orc2 in G(1)-arrested cells but decreased in asynchronous or M-phase cells. Similarly, the signals from Orc1, Mcm3, and Mcm7 were at background levels in cells arrested in M phase, whereas Orc2 retained the distribution seen in G(1)-phase cells. Previously shown to cause histone hyperacetylation and delocalization of replication initiation, trichostatin A treatment of cells led to a parallel qualitative change in the distribution of Mcm3, but not Orc2, across the c-myc replicator. Orc2, Mcm3, and DUE-B were also bound at an ectopic c-myc replicator, where deletion of sequences essential for origin activity was associated with the loss of DUE-B binding or the alteration of chromatin structure and loss of Mcm3 binding. These results show that proteins implicated in replication initiation are selectively and differentially bound across the c-myc replicator, dependent on discrete structural elements in DNA or chromatin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号