首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Escherichia coli DnaG primase is a single-stranded DNA-dependent RNA polymerase. Primase catalyzes the synthesis of a short RNA primer to initiate DNA replication at the origin and to initiate Okazaki fragment synthesis for synthesis of the lagging strand. Primase activity is greatly stimulated through its interaction with DnaB helicase. Here we report a 96-well homogeneous scintillation proximity assay (SPA) for the study of DnaB-stimulated E. coli primase activity and the identification of E. coli primase inhibitors. The assay uses an adaptation of the general priming reaction by employing DnaG primase, DnaB helicase, and ribonucleotidetriphosphates (incorporation of [(3)H]CTP) for in vitro primer synthesis on single-stranded oligonucleotide and M13mp18 DNA templates. The primase product is captured by polyvinyl toluene-polyethyleneimine-coated SPA beads and quantified by counting by beta-scintography. In the absence of helicase as a cofactor, primer synthesis is reduced by 85%. The primase assay was used for screening libraries of compounds previously identified as possessing antimicrobial activities. Primase inhibitory compounds were then classified as direct primase inhibitors or mixed primase/helicase inhibitors by further evaluation in a specific assay for DnaB helicase activity. By this approach, specific primase inhibitors could be identified.  相似文献   

2.
The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes.  相似文献   

3.
A novel DNA primase activity has been identified in HeLa cells infected with herpes simplex virus type 1 (HSV-1). Such an activity has not been detected in mock-infected cells. The primase activity coeluted with a portion of HSV-1 DNA polymerase from single-stranded DNA agarose columns loaded with high-salt extracts derived from infected cells. This DNA primase activity could be distinguished from host HeLa cell DNA primase by several criteria. First, the pH optimum of the HSV primase was relatively broad and peaked at 8.2 to 8.7 pH units. In contrast, the pH optimum of the HeLa DNA primase was very sharp and fell between pH 7.9 and 8.2. Second, freshly isolated HSV DNA primase was less salt sensitive than the HeLa primase and was eluted from single-stranded DNA agarose at higher salt concentrations than the host primase. Third, antibodies raised against individual peptides of the calf thymus DNA polymerase:primase complex cross-reacted with the HeLa primase but did not react with the HSV DNA primase. Fourth, freshly prepared HSV DNA primase appeared to be associated with the HSV polymerase, but after storage at 4 degrees C for several weeks, the DNA primase separated from the viral DNA polymerase. Separation or decoupling could also be achieved by gel filtration of the HSV polymerase:primase. This free DNA primase had an apparent molecular size of approximately 40 kilodaltons, whereas free HeLa DNA primase had an apparent molecular size of approximately 110 kilodaltons. On the basis of these data, we believe that the novel DNA primase activity in HSV-infected cells may be virus coded and that this enzyme represents a new and important function involved in the replication of HSV DNA.  相似文献   

4.
The primase fragment of the bacteriophage T7 63-kDa gene 4 helicase/primase protein contains the 271 N-terminal amino acid residues and lacks helicase activity. The primase fragment catalyzes the synthesis of oligoribonucleotides at rates similar to those catalyzed by the full-length protein in the presence of a 5-nucleotide DNA template containing a primase recognition site (5'-GGGTC-3', 5'-TGGTC-3', 5'-GTGTC-3', or 5'-TTGTC-3'). Although it is not copied into the oligoribonucleotides, the cytosine at the 3'-position is essential for synthesis and template binding. Two nucleotides flanking the 3'-end of the recognition site are required for tight DNA binding and rapid oligoribonucleotide synthesis. Nucleotides added to the 5'-end have no effect on the rate of oligoribonucleotide synthesis or the affinity of the primase for DNA. The binding of either ATP or CTP significantly increases the affinity of the primase for its DNA template. DNA lacking a primase recognition site does not inhibit oligoribonucleotide synthesis, suggesting that the primase binds DNA in a sequence-specific manner. The affinity of the primase for templates is weak, ranging from 10 to 150 microM. The tight DNA binding (<1 microM) observed with the 63-kDa gene 4 protein occurs via interactions between DNA templates and the helicase domain.  相似文献   

5.
T W Wong  D A Clayton 《Cell》1986,45(6):817-825
DNA primase isolated from human mitochondria sediments in glycerol density gradients at 30S and 70S. These unusually high sedimentation coefficients are a result of association of the primase activity with RNA. Treatment of primase with nuclease not only affects its sedimentation behavior, but also inactivates the primase activity. The major RNA species that cofractionates with primase activity is shown by direct sequence analysis to be cytosolic 5.8S ribosomal RNA (rRNA). Specific degradation of endogenous 5.8S rRNA using ribonuclease H and oligonucleotides complementary to 5.8S rRNA results in reduction of primase activity. Other small RNAs may play a structural role in the formation of an active DNA primase complex.  相似文献   

6.
The 63 kDa gene 4 protein of bacteriophage T7 provides both helicase and primase activities. The C-terminal helicase domain of the gene 4 protein is responsible for DNA-dependent NTP hydrolysis and for hexamer formation, whereas the N-terminal primase domain contains the zinc motif that is, in part, responsible for template-directed oligoribonucleotide synthesis. In the presence of beta, gamma-methylene dTTP, the protein forms a hexamer that surrounds and binds tightly to single-stranded DNA and consequently is unable to translocate to primase recognition sites, 5'-GTC-3', or to dissociate from the molecule to which it is bound. Nonetheless, in the presence of beta,gamma-methylene dTTP, it catalyzes the synthesis of pppAC dimers at primase sites on M13 DNA. When bound to single-stranded DNA in the presence of beta,gamma-methylene dTTP, the primase can function at recognition sites on the same molecule to which it is bound provided that a sufficient distance exists between the recognition site and the site to which it is bound. Furthermore, the primase bound to one DNA strand can function at a primase site located on a second DNA strand. The results indicate that the primase domain resides on the outside of the hexameric ring, a location that enables it to access sites distal to its site of binding.  相似文献   

7.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

8.
At a replication fork DNA primase synthesizes oligoribonucleotides that serve as primers for the lagging strand DNA polymerase. In the bacteriophage T7 replication system, DNA primase is encoded by gene 4 of the phage. The 63-kDa gene 4 protein is composed of two major domains, a helicase domain and a primase domain located in the C- and N-terminal halves of the protein, respectively. T7 DNA primase recognizes the sequence 5'-NNGTC-3' via a zinc motif and catalyzes the template-directed synthesis of tetraribonucleotides pppACNN. T7 DNA primase, like other primases, shares limited homology with DNA-dependent RNA polymerases. To identify the catalytic core of the T7 DNA primase, single-point mutations were introduced into a basic region that shares sequence homology with RNA polymerases. The genetically altered gene 4 proteins were examined for their ability to support phage growth, to synthesize functional primers, and to recognize primase recognition sites. Two lysine residues, Lys-122 and Lys-128, are essential for phage growth. The two residues play a key role in the synthesis of phosphodiester bonds but are not involved in other activities mediated by the protein. The altered primases are unable to either synthesize or extend an oligoribonucleotide. However, the altered primases do recognize the primase recognition sequence, anneal an exogenous primer 5'-ACCC-3' at the site, and transfer the primer to T7 DNA polymerase. Other lysines in the vicinity are not essential for the synthesis of primers.  相似文献   

9.
The DNA polymerase α-primase complex forms an essential part of the eukaryotic replisome. The catalytic subunits of primase and pol α synthesize composite RNA-DNA primers that initiate the leading and lagging DNA strands at replication forks. The physical basis and physiological significance of tethering primase to the eukaryotic replisome via pol α remain poorly characterized. We have identified a short conserved motif at the extreme C terminus of pol α that is critical for interaction of the yeast ortholog pol1 with primase. We show that truncation of the C-terminal residues 1452-1468 of Pol1 abrogates the interaction with the primase, as does mutation to alanine of the invariant amino acid Phe(1463). Conversely, a pol1 peptide spanning the last 16 residues binds primase with high affinity, and the equivalent peptide from human Pol α binds primase in an analogous fashion. These in vitro data are mirrored by experiments in yeast cells, as primase does not interact in cell extracts with pol1 that either terminates at residue 1452 or has the F1463A mutation. The ability to disrupt the association between primase and pol α allowed us to assess the physiological significance of primase being tethered to the eukaryotic replisome in this way. We find that the F1463A mutation in Pol1 renders yeast cells dependent on the S phase checkpoint, whereas truncation of Pol1 at amino acid 1452 blocks yeast cell proliferation. These findings indicate that tethering of primase to the replisome by pol α is critical for the normal action of DNA replication forks in eukaryotic cells.  相似文献   

10.
The gene for the DNA primase encoded by Salmonella typhimurium bacteriophage SP6 has been cloned and expressed in Escherichia coli and its 74-kDa protein product purified to homogeneity. The SP6 primase is a DNA-dependent RNA polymerase that synthesizes short oligoribonucleotides containing each of the four canonical ribonucleotides. GTP and CTP are both required for the initiation of oligoribonucleotide synthesis. In reactions containing only GTP and CTP, SP6 primase incorporates GTP at the 5'-end of oligoribonucleotides and CMP at the second position. On synthetic DNA templates, pppGpC dinucleotides are synthesized most rapidly in the presence of the sequence 5'-GCA-3'. This trinucleotide sequence, containing a cryptic dA at the 3'-end, differs from other known bacterial and phage primase recognition sites. SP6 primase shares some properties with the well-characterized E. colibacteriophage T7 primase. The T7 DNA polymerase can use oligoribonucleotides synthesized by SP6 primase as primers for DNA synthesis. However, oligoribonucleotide synthesis by SP6 primase is not stimulated by either the E. coli- or the T7-encoded ssDNA binding protein. An amino acid sequence alignment of the SP6 and T7 primases, which share only 22.4% amino acid identity, indicates amino acids likely critical for oligoribonucleotide synthesis as well as a putative Cys(3)His zinc finger motif that may be involved in DNA binding.  相似文献   

11.
The gene product 61 primase protein from bacteriophage T4 was expressed as an intein fusion and purified to homogeneity. The primase binds one zinc ion, which is coordinated by four cysteine residues to form a zinc ribbon motif. Factors that influence the rate of priming were investigated, and a physiologically relevant priming rate of approximately 1 primer per second per primosome was achieved. Primase binding to the single-stranded binding protein (1 primase:4 gp32 monomers; K(d) approximately 860 nM) and to the helicase protein in the presence of DNA and ATP-gamma-S (1 primase:1 helicase monomer; K(d) approximately 100 nM) was investigated by isothermal titration calorimetry (ITC). Because the helicase is hexameric, the inferred stoichiometry of primase binding as part of the primosome is helicase hexamer:primase in a ratio of 1:6, suggesting that the active primase, like the helicase, might have a ring-like structure. The primase is a monomer in solution but binds to single-stranded DNA (ssDNA) primarily as a trimer (K(d) approximately 50-100 nM) as demonstrated by ITC and chemical cross-linking. Magnesium is required for primase-ssDNA binding. The minimum length of ssDNA required for stable binding is 22-24 bases, although cross-linking reveals transient interactions on oligonucleotides as short as 8 bases. The association is endothermic at physiologically relevant temperatures, which suggests an overall gain in entropy upon binding. Some possible sources of this gain in entropy are discussed.  相似文献   

12.
Wu K  Lai X  Guo X  Hu J  Xiang X  Huang L 《Molecular microbiology》2007,63(3):826-837
The heterodimeric primase from the hyperthermophilic archaeon Sulfolobus solfataricus synthesizes long RNA and DNA products in vitro. How primer synthesis by primase is coupled to primer extension by DNA polymerase in this organism is unclear. Here we show that the small subunit of the clamp loader replication factor C (RFC) of S. solfataricus interacted with both the catalytic and non-catalytic subunits of the primase by yeast two-hybrid and co-immunoprecipitation assays. Further, the primase-RFC interaction was also identified in the cell extract of S. solfataricus. Deletion analysis indicated that the small subunit of RFC interacted strongly with the N-terminal domain of the catalytic subunit of the primase. RFC stimulated dinucleotide formation but decreased the amount of primers synthesized by the primase. The inhibition of primer synthesis is consistent with the observation that RFC reduced the affinity of the primase for DNA templates. On the other hand, primase stimulated the ATPase activity of RFC. These findings suggest that the primase-RFC interaction modulates the activities of both enzymes and therefore may be involved in the regulation of primer synthesis and the transfer of primers to DNA polymerase in Archaea.  相似文献   

13.
A very highly purified fraction of KB cell DNA polymerase-alpha, prepared with a monoclonal antibody, contains DNA primase activity. The primase synthesizes oligonucleotide chains initiated with ATP in a reaction that is resistant to alpha-amanitin and strictly dependent on added template and ribonucleoside triphosphates (rNTPs). In the presence of added dNTPs and M13 DNA template, the primase produces a uniform population of oligoribonucleotides, predominantly hexamers to decamers, that are extended by polymerase-alpha into DNA chains up to 3000 nucleotides long. There is no evidence for nucleotide preferences at RNA/DNA junctions. In the absence of added dNTPs, the oligomeric products are heterogeneous in size and composition and susceptible to cleavage by pancreatic DNase I due to their content of short oligodeoxynucleotide tracts synthesized by primase from trace contaminant dNTPs in the rNTP substrates. The primase and polymerase-alpha activities are distinguishable by several physical and chemical criteria, and the primase reaction is only partially sensitive to two potent, independent monoclonal antibodies that neutralize polymerase-alpha. Although the presence of both primase and polymerase-alpha activities in a highly purified immune complex prepared with a monoclonal antibody argues for their tight physical association, the chemical, physical, and immunological discriminations indicate the two catalytic entities are functionally and structurally distinct.  相似文献   

14.
The study of primases from model organisms such as Escherichia coli , phage T7 and phage T4 has demonstrated the essential nature of primase function, which is to generate de novo RNA polymers to prime DNA polymerase. However, little is known about the function of primases from other eubacteria. Their overall low primary sequence homology may result in functional differences. To help understand which primase functions were conserved, primase and its replication partner helicase from the pathogenic Gram-positive bacteria Staphylococcus aureus were compared in detail with that of E. coli primase and helicase. The conserved properties were to primer initiation and elongation and included slow kinetics, low fidelity and poor sugar specificity. The significant differences included S. aureus primase having sixfold higher kinetic affinity for its template than E. coli primase under equivalent conditions. This naturally higher activity was balanced by its fourfold lower stimulation by its replication fork helicase compared with E. coli primase. The most significant difference between the two primases was that S. aureus helicase stimulation did not broaden the S. aureus primase initiation specificity, which has important biological implications.  相似文献   

15.
Bacterial primase is stimulated by replicative helicase to produce RNA primers that are essential for DNA replication. To identify mechanisms regulating primase activity, we characterized primase initiation specificity and interactions with the replicative helicase for gram-positive Firmicutes (Staphylococcus, Bacillus and Geobacillus) and gram-negative Proteobacteria (Escherichia, Yersinia and Pseudomonas). Contributions of the primase zinc-binding domain, RNA polymerase domain and helicase-binding domain on de novo primer synthesis were determined using mutated, truncated, chimeric and wild-type primases. Key residues in the β4 strand of the primase zinc-binding domain defined class-associated trinucleotide recognition and substitution of these amino acids transferred specificity across classes. A change in template recognition provided functional evidence for interaction in trans between the zinc-binding domain and RNA polymerase domain of two separate primases. Helicase binding to the primase C-terminal helicase-binding domain modulated RNA primer length in a species-specific manner and productive interactions paralleled genetic relatedness. Results demonstrated that primase template specificity is conserved within a bacterial class, whereas the primase–helicase interaction has co-evolved within each species.  相似文献   

16.
Replisome DNA primases are responsible for the synthesis of short RNA primers required for the initiation of repetitive Okazaki fragment synthesis on the lagging strand during DNA replication. In bacteriophage T4, the primase (gp61) interacts with the helicase (gp41) to form the primosome complex, an interaction that greatly stimulates the priming activity of gp61. Because gp41 is hexameric, a question arises as to whether gp61 also forms a hexameric structure during replication. Several results from this study support such a structure. Titration of the primase/single-stranded DNA binding followed by fluorescence anisotropy implicated a 6:1 stoichiometry. The observed rate constant, k(cat), for priming was found to increase with the primase concentration, implicating an oligomeric form of the primase as the major functional species. The generation of hetero-oligomeric populations of the hexameric primase by controlled mixing of wild type and an inactive mutant primase confirmed the oligomeric nature of the most active primase form. Mutant primases defective in either the N- or C-terminal domains and catalytically inactive could be mixed to create oligomeric primases with restored catalytic activity suggesting an active site shared between subunits. Collectively, these results provide strong evidence for the functional oligomerization of gp61. The potential roles of gp61 oligomerization during lagging strand synthesis are discussed.  相似文献   

17.
Human placenta and calf thymus DNA-polymerase-alpha-primases were analyzed using native gradient-polyacrylamide-gel electrophoresis followed by overlay assays of polymerase and primase activities. The human enzyme contained three catalytically active native forms of 330, 440 and 560 kDa and the bovine enzyme five forms of 330, 440, 500, 590 and 660 kDa. Of the various DNA polymerase forms, only the largest (560 kDa for human DNA polymerase and 590 kDa and 660 kDa for bovine DNA polymerase) contained primase activity. Titration of human DNA-polymerase-alpha-primase with DNA-polymerase-free primase caused the conversion of the 440-kDa to the 560-kDa form. The data favour the idea that primase binds to DNA polymerase alpha as an oligomer of 3 primases/polymerase core. In addition, the ability of primase to utilize oligoriboadenylates containing (prA)n or pp(prA)n was investigated. The primase elongated pp(prA)2-7 up to nanoadenylates or decaadenylates, but did not add 9 or 10 mononucleotides to a preexistent primer. In contrast to pp(prA)n less than 10, (prA)n less than 10 were rather poor primers for the primase. Both pp(prA)8,9 and (prA)n greater than 10 were elongated by primase, producing characteristic multimeric oligonucleotides. The possible connection of the structure of the DNA-polymerase-alpha-primase complex with the catalytical properties of primase is discussed.  相似文献   

18.
A mathematical model is proposed for processive primer extension by eukaryotic DNA primase. The model uses available experimental data to predict rate constants for the dynamic behavior of primase activity as a function of NTP concentration. The model also predicts some data such as the binding affinities of the primase for the DNA template and for the RNA primer.  相似文献   

19.
Prim‐pol is a recently identified DNA primase‐polymerase belonging to the archaeao‐eukaryotic primase (AEP) superfamily. Here, we characterize a previously unrecognized prim‐pol in human cells, which we designate hPrimpol1 (human primase‐polymerase 1). hPrimpol1 possesses primase and DNA polymerase activities in vitro, interacts directly with RPA1 and is recruited to sites of DNA damage and stalled replication forks in an RPA1‐dependent manner. Cells depleted of hPrimpol1 display increased spontaneous DNA damage and defects in the restart of stalled replication forks. Both RPA1 binding and the primase activity of hPrimpol1 are required for its cellular function during DNA replication. Our results indicate that hPrimpol1 is a novel factor involved in the response to DNA replication stress.  相似文献   

20.
B Arezi  B W Kirk  W C Copeland  R D Kuchta 《Biochemistry》1999,38(39):12899-12907
Regulation of the p49-p58 primase complex during primer synthesis and the interaction of the primase subunits with DNA were examined. After primase synthesizes a primer that DNA polymerase alpha (pol alpha) can readily elongate, further primase activity is negatively regulated. This occurs within both the context of the four-subunit pol alpha-primase complex and in the p49-p58 primase complex, indicating that the newly generated primer-template species need not interact with pol alpha to regulate further primase activity. Photo-cross-linking of single-stranded DNA-primase complexes revealed that whereas the isolated p49 and p58 subunits both reacted with DNA upon photolysis, only the p58 subunit reacted with the DNA when photolysis was performed using the p49-p58 primase complex. After primer synthesis by the complex, p58 was again the only subunit that reacted with the DNA. These results suggest a model for regulation of primer synthesis in which the newly synthesized primer-template species binds to p58 and regulates further primer synthesis. Additionally, the ability of p58 to interact with primer-template species suggests that p58 mediates the transfer of primers from the primase active site to pol alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号