首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To analyze externalization of phosphatidylserine via annexin V on apoptotic cells by laser scanning confocal microscopy and factor analysis of biomedical image sequences (FAMIS). STUDY DESIGN: Streptavidin-fluorescein isothiocyanate (FITC), -europium (Eu), -phycoerythrin (PE) and -Texas Red (TR) were chosen to reveal the binding of biotinylated annexin V on apoptotic U937 human leukemic cells and ECV-304 human endothelial cells induced under treatment with 7-ketocholesterol or 7 beta-hydroxycholesterol. Excitation of each fluorochrome was obtained by selection of specific lines (351 + 364 nm, 488 nm) of the argon laser of a confocal microscope. Temporal and spectral series were performed to characterize each fluorochrome. FAMIS was applied to these series to estimate images corresponding to stains. RESULTS: Each fluorochrome was clearly distinguished, and images showed localization of phosphatidylserine, which was improved by image analysis. CONCLUSION: On apoptotic cells it is possible to analyze differences in the improved visualization of phosphatidylserine in series processed by FAMIS with the use of biotinylated annexin V revealed with streptavidin-FITC, -Eu, -PE or -TR.  相似文献   

2.
We have developed a mammalian expression system suitable for the production of enzymatically biotinylated integral membrane proteins. The key feature of this system is the doxycycline (dox)-regulated co-expression of a secreted variant of Escherichia coli biotin ligase (BirA) and a target protein with a 13-residue biotin acceptor peptide (BioTag) appended to its extracellular domain. Here we describe the expression and functional analysis of three G-protein coupled receptors (GPCRs): protease-activated receptors (PARs) 1 and 2, and the platelet ADP receptor, P2Y(12). Clonal Chinese hamster ovary (CHO) Tet-On cell lines that express biotinylated GPCRs were rapidly isolated by fluorescence-activated cell sorting following streptavidin-FITC staining, thereby circumventing the need for manual colony picking. Analysis by Western blotting with streptavidin-HRP following endoglycosidase treatment revealed that all three GPCRs undergo N-linked glycosylation. The expression of biotinylated GPCRs on the cell surface was regulated by the concentration of dox in the medium, reaching a maximum at approximately 1 microg/mL dox. Similarly, the extent of GPCR biotinylation was dependent on biotin concentration, with maximum and complete biotinylation achieved upon supplementation with 50 microM biotin. Biotinylated PAR1 and PAR2 were readily and specifically cleaved on the surface of intact cells by their cognate proteases, and were capable of transducing extracellular stimuli, resulting in the downstream phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, P2Y(12) mediated agonist-induced ERK phosphorylation only when it was expressed at low levels on the cell surface, highlighting the utility of regulated expression for the production of functionally active GPCRs in mammalian cells.  相似文献   

3.
A piezoelectric DNA biosensor was prepared by immobilizing DNA probes on a quartz crystal microbalance (QCM) using a lipid-based method. A QCM electrode was coated with a hybrid bilayer membrane composed of an octadecanethiol monolayer and a lipid monolayer containing biotinylated lipids to establish biotin groups on the electrode surface. A DNA biosensor was prepared by sequentially immobilizing avidin and the biotinylated probe. The DNA biosensor was stable throughout repeated surface regeneration and showed higher sensitivity than that prepared by the conventional chemical method using diimide. We also optimized the surface regeneration conditions and flow rate for flow injection analysis.  相似文献   

4.
G A Griess  E T Moreno  R Herrmann  P Serwer 《Biopolymers》1990,29(8-9):1277-1287
The sieving of rod-shaped viruses during agarose gel electrophoresis is quantitatively analyzed here with a previously proposed model [G. A. Griess et al. (1989) Biopolymers, 28, 1475-1484] that has one radius (PE) of the effective pore at each concentration of gel. By use of this model and an internal spherical size standard, a plot of electrophoretic mobility vs agarose percentage is converted to a plot of the radius of the effective sphere (effective radius) vs PE. Experimentally, when the concentration of the rod-shaped bacteriophage, fd, is progressively increased, eventually the electrophoretic mobility of fd becomes dependent on its concentration. The concentration of fd at which this occurs decreases as the agarose concentration decreases. After avoiding this dependence on the concentration of sample, the effective radius of rod-shaped particles, including bacteriophage fd, length variants of fd, and length variants of tobacco mosaic virus, is found to increase as PE increases until a plateau of approximately constant maximum effective radius is reached at PcE. In the region of this plateau, the effective sphere's measure that best approximates that of the rod is surface area. However, significant disagreement with the data exists for surface area; the maximum effective radius for fd varies as (length)0.69. For fd and its length variants, the value of 2.PcE/length increases from 0.21 to 0.86 as the length decreases from 2808 to 367 nm. The dependence of effective radius on PE and the proximity of 2.PcE to the length of the rod are explained by (a) random orientation of rods at PE values in the region of the plateau, and (b) increasingly preferential end-first orientation (reptation) of the rod as PE decreases below PcE. This hypothesis of reptation is supported by a significant dependence of electrophoretic mobility on electrical potential gradient for a PE below, but not above, PcE. The dependence of 2.PcE/length on length is not rigorously understood, but is qualitatively explained by flexibility of the rods. This apparent flexibility has thus far prevented determination of a rod's axial ratio from quantitation of sieving during agarose gel electrophoresis. The electrical potential dependence of electrophoretic mobility is determined here by a procedure of two-dimensional agarose gel electrophoresis. This procedure is also useful for detecting rod-shaped particles in heterogeneous mixtures of predominantly spherical particles.  相似文献   

5.
In order to explore the use of exchangeable poly(ethylene glycol) (PEG)-modified diacylphosphatidylethanolamines (PE) to temporarily shield binding ligands attached to the surface of liposomes, a model reaction based on inhibition and subsequent recovery of biotinylated liposome binding to streptavidin immobilized on superparamagnetic iron oxide particles (SA magnetic particles) was developed. PEG-lipid incorporation into biotinylated liposomes decreased liposome binding to SA magnetic particles in a non-linear fashion, where as little as 0.1 mol% PEG-PE resulted in a 20% decrease in binding. Using an assay based on inhibition of binding, PEG(2000)-PE transfer from donor liposomes to biotinylated acceptor liposomes could be measured. The influence of temperature and acyl chain composition on the transfer of PEG-diacyl PEs from donor liposomes to acceptor liposomes, consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine, cholesterol and N-((6-biotinoyl)amino)hexanoyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (54.9:45:0.1 mole ratio), was measured. Donor liposomes were prepared using 1,2-distearoyl-sn-glycero-3-phosphocholine (50 mol%), cholesterol (45 mol%) and 5 mol% of either PEG-derivatized 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE-PEG(2000)), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-PEG(2000)), or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG(2000)). Transfer of DSPE-PEG(2000) to the donor liposomes was not detected under the conditions employed. In contrast, DMPE-PEG(2000) was transferred efficiently even at 4 degrees C. Using an acceptor to donor liposome ratio of 1:4, the time required for DMPE-PEG(2000) to become evenly distributed between the two liposome populations (T(EQ)) at 4 degrees C and 37 degrees C was approx. 2 and <0.5 h, respectively. An increase in acyl chain length from C14:0 to C16:0 of the PEG-lipid resulted in a significant reduction in the rate of transfer as measured by this assay. The transfer of PEG-lipid out of biotinylated liposomes was also studied in mice following intravenous administration. The relative rates of transfer for the various PEG-lipids were found to be comparable under in vivo and in vitro conditions. These results suggest that it is possible to design targeted liposomes with the targeting ligand protected while in the circulation through the use of PEG-lipids that are selected on the basis of exchange characteristics which result in exposure of the shielded ligand following localization within a target tissue.  相似文献   

6.
Non denaturing gradient gel electrophoresis (GGE) is commonly used to analyze the size distribution of lipoprotein particles. Its relatively low sensitivity and linear dynamic range limit use of GGE to quantify protein content of lipoproteins. We demonstrate a new high sensitivity method for analysis and quantitation of biotinylated apolipoprotein B (apoB)-containing lipoproteins using a fluorescent streptavidin-Cy3 conjugate and non covalent preelectrophoretic binding. Forty-four lipoprotein subfractions spanning the VLDL and LDL particle spectrum subfractions (11 each from four human subjects) were prepared by density gradient ultracentrifugation. An aliquot of each sample was biotinylated and GGE was performed. Gels also were stained for lipid with Oil Red O (32 samples) and for protein with Coomassie Brilliant Blue (30 samples). There was a significant relationship between the Cy3 fluorescent label area under the curve and the mass of apoB (P < 0.02-0.004) and total cholesterol (P < 0.03-0.004). Particle diameters of each absorbence/fluorescent peak were comparable between Oil-Red O and streptavidin-Cy3 treated biotinylated lipoproteins (+/-3.54 A, P = 0.3). Biotinylation and prestaining of lipoprotein particle with streptavidin-Cy3 provides a new fluorescence-based method for detection and quantitative analysis of lipoprotein subspecies by gradient gel electrophoresis.  相似文献   

7.
The effects of length and content of chain branching on the mechanical properties of polyethylene (PE) in atomic scale were examined by molecular dynamics (MD) simulations. Methyl-, ethyl- and butyl-groups were adopted as branched chains to distribute along PE backbones. Plastic flow deformation was captured by providing a uniaxial tensile loading at a given strain rate, which shows the characteristic of rate dependence. Current results are in reasonable agreements with existing experimental data. The statistical results show that the longer length of chain branching induces lower equilibrium density and higher yield strength of branched PE. In addition, higher content of chain branching brings higher equilibrium density and lower yield strength of branched PE. It is assumed that the distribution of dihedral angles influences the deformation of PE definitely. The non-bond interactions contribute to the load-bearing capacity of PE largely. Branched PE shows big differences on mechanical behaviours comparing with the linear one. Chain branching distribution also greatly affects the performance of PE, which needs a further discussion.  相似文献   

8.
Based on the requirements of biomolecular interaction analysis on direct optical transducers, a streptavidin surface is examined. A general protocol was developed allowing the immobilization of biotinylated compounds using the rife biotin-streptavidin system. This type of surface modification can be applied to all biosensors using glass surfaces as sensor devices. Reflectometric interference spectroscopy (RIfS), a label-free, direct optical method was used to demonstrate the quality of the transducer surfaces. The surface modification is based on an aminofunctionalized polyethylene glycol layer covalently bound to the silica surface of the transducer and shows very little nonspecific binding. Biotin molecules can be easily coupled on such layers. Streptavidin followed by a biotinylated estrone derivative was immobilized by incubation of the biotinylated transducer surface. For the streptavidin layer we obtained interference signals corresponding to a protein monolayer. Finally, using a surface prepared as described above, biomolecular interaction experiments with an antibody against estrone were carried out to show the quality of the transducer surface. With RIfS all of the affinity-based surface modifications can be detected online and time resolved.  相似文献   

9.
We have developed an affinity biosensor system based on avidin-biotin interaction on a gold electrode. As the building block of an affinity-sensing monolayer, a fourth-generation (G4) poly(amidoamine) dendrimer having partial ferrocenyl-tethered surface groups was prepared and used. The unmodified surface amine groups from dendrimers were functionalized with biotinamidocaproate, and the biotinylated and electroactive dendritic monolayer was constructed on a gold electrode for the affinity-sensing surface interacting with avidin. An electrochemical signal from the affinity biosensor was generated by free glucose oxidase in electrolyte, depending on the degree of coverage of the sensing surface with avidin. The sensor signal decreased correlatively with increasing avidin concentration and approached a minimum level when the sensing surface was fully covered with avidin. The detection limit of avidin was about 4.5 pM, and the sensor signal was linear ranging from 1.5 pM to 10 nM under optimized conditions. From the kinetic analysis using the biotinylated glucose oxidase, an active enzyme coverage of 2.5 x 10(-12) mol/cm(2) on the avidin-pretreated surface was registered, which demonstrates the formation of a spatially ordered and compact protein layer on the derivatized electrode surface.  相似文献   

10.
Abstract. Vegetation science has relied on untested paradigms relating to the shape of species response curves along environmental gradients. To advance in this field, we used the HOF approach to model response curves for 112 plant species along six environmental gradients and three ecoclines (as represented by DCA ordination axes) in SE Norwegian swamp forests. Response curve properties were summarized in three binary response variables: (1) model unimodal or monotonous (determinate) vs. indeterminate; (2) for determinate models, unimodal vs. monotonous and (3) for unimodal models, skewed vs. symmetric. We used logistic regression to test the influence, singly and jointly, of seven predictor variables on each of three response variables. Predictor variables included gradient type (environmental or ecocline) and length (compositional turnover); species category (vascular plant, moss, Sphagnum or hepatic), species frequency and richness, tolerance (the fraction of the gradient along which the species occurs) and position of species along each gradient. The probability for fitting a determinate model increased as the main occurrence of species approached gradient extremes and with increasing species tolerance and frequency and gradient length. Appearance of unimodal models was favoured by low species tolerance and disfavoured by closeness of species to gradient extremes. Appearance of skewed models was weakly related to predictors but was slightly favoured by species optima near gradient extremes. Contrary to the results of previous studies, species category, gradient type and variation in species richness along gradients did not contribute independently to model prediction. The overall best predictors of response curve shape were position along the gradient (relative to extremes) and tolerance; the latter also expressing gradient length in units of compositional turnover. This helps predicting species responses to gradients from gradient specific species properties. The low proportion of skewed response curves and the large variation of species response curves along all gradients indicate that skewed response curves is a smaller problem for the performance of ordination methods than often claimed. We find no evidence that DCA ordination increases the unimodality, or symmetry, of species response curves more than expected from the higher compositional turnover along ordination axes. Thus ordination axes may be appropriate proxies for ecoclines, applicable for use in species response modelling.  相似文献   

11.
In this study, the early stage of interfacial crystallisation behaviour of low molecular weight polyethylene (PE) and isotactic polypropylene (iPP) oligomer on the surface of carbon nanotubes (CNTs) with different diameters, chiralities and topography structures was studied using MD simulations. We started to simulate the effect of CNTs chirality and diameter on PE molecular chain orientation, and then the effect of CNTs topography structure on PE and iPP molecular chain orientation was investigated. Finally, some experiments were carried out to prove the simulated results. Our study shows that for CNTs with a diameter comparable with the radius of gyration (Rg) of a polymer chain, an easy orientation of PE chains along CNTs axis is observed for all the systems of the CNTs with different chiralities due to a geometric confinement effect. For CNTs with a much larger diameter, multiple orientation of PE chains is induced on its surface due to the lattice matching between graphite lattice and PE molecular chains. In this case, the chirality of CNTs dominates the orientation of graphite lattice, which determines the orientation of PE chains arrangement on CNTs surface. More importantly, it was found that the groove structure formed by CNT bundles is very useful for the stabilisation of polymer chain, and thus facilitates the orientation of molecular chain along the long axis of CNTs. As a result, a novel nanohybrid shish–kebab (NHSK) structure with CNTs acting as central shish while polymer lamellae as kebab can be successfully obtained for both PE with zigzag conformation and iPP with helical conformation. This simulation result was well supported by the experimental observation. Our study could provide not only a deep understanding of the origin of the polymer chain orientation on CNTs surface but also the guidance for the preparation of polymer/CNTs nanocomposites with novel NHSK structure.  相似文献   

12.
We describe the synthesis of a novel biotinylated nanotextured degradable hydrogel that can be rapidly surface engineered with a diverse range of biotinylated moieties. The hydrogel is synthesized by reacting methacrylated biotin-PEG with dimethacrylated P LA-b- PEG-b-P LA (LPLDMA, PEG = poly(ethylene glycol), PLA = poly(lactic acid)),or dimethacrylated PEG-b-P LA-b- PEG (PLPDMA). Methacrylated biotin-PEG is prepared by reacting biotin-PEG-OH with methacrylic anhydride. Biotin-PEG-OH is prepared by reacting alpha-hydroxy-omega-amine PEG with N-hydroxysuccinimide-biotin. Confirmation of the final product is determined using (1)H NMR and Fourier transform infrared spectroscopy (FTIR). The integrity and surface presentation of the biotin units is observed spectrophotometrically using the HABA/avidin assay. To produce nanostructured polymer topography, a self-assembling lyotropic liquid crystalline mesophase is used as a polymerization template, generating biotinylated hydrogels with highly organized lamellar matrix geometry. Traditionally processed isotropic hydrogels are used for comparison. Scanning electron microscopy shows that isotropic hydrogels have a smooth glassy appearance while lamellar templated hydrogels have defined surface topographical features that enhance preosteoblast human palatal mesenchymal cell (HEPM) attachment. Engineering the surfaces of the hydrogels with cell adhesive Arg-Gly-Asp (RGD) peptide sequences using the biotin-avidin interaction significantly enhances cell attachment. Surface engineering of cell adhesive peptides in conjunction with the lamellar template induced surface topography generates additive enhancements in cell attachment.  相似文献   

13.
Carboxyacyl derivatives of phosphatidylethanolamine with different chain length were synthesized. These compounds were generally prepared by conversion of an appropriate dicarboxylic acid to its anhydride with dicyclohexylcarbodiimide, then reaction with phosphatidylethanolamine (PE) and triethylamine, followed by acidification. These derivatives, when incorporated into liposomes, were highly efficient in conjugating protein to liposomes. Liposomes with PE amide derivative incorporated were activated with water-soluble carbodiimide, and subsequently reacted with protein. The protein to lipid coupling efficiency was shown to be dependent on the chain length of the derivative, and the optimum coupling efficiency was achieved with PE amide of 1,12-dodecanedicarboxylic acid. Up to 60% covalent coupling efficiency of mouse IgG to liposomes was demonstrated with little non-covalent binding. This method will be of great importance in the liposome-targeting field.  相似文献   

14.
Detergent-resistant membranes (DRMs) from Leishmania (Viannia) braziliensis promastigotes, insoluble in 1% Triton X-100 at 4 degrees C, were fractionated by sucrose density gradient ultracentrifugation. They were composed of glycoinositolphospholipids (GIPLs), inositol phosphorylceramide (IPC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and sterols. In contrast, 1% Triton X-100-soluble fraction was composed of PE, phosphatidylcholine, phosphatidylserine, PI, IPC, sterol, and lyso-PI. High-performance thin-layer chromatography (HPTLC) immunostaining using monoclonal antibody SST-1 showed that 85% of GIPLs are present in DRMs, and immunoelectron microscopic analysis showed that SST-1-reactive components are located in patches along the parasite surface. No difference in GIPL pattern was observed by HPTLC between Triton X-100-soluble versus -insoluble fractions at 4 degrees C. Analysis of fatty acid composition in DRMs by GC-MS showed the presence of GIPLs containing an alkylacylglycerol, presenting mainly saturated acyl and alkyl chains. DRMs also contained sterol, IPC with saturated fatty acids, PI with at least one saturated acyl chain, and PE with predominantly oleic acid. Promastigotes treated with methyl-beta-cyclodextrin to disrupt lipid microdomains showed significantly lower macrophage infectivity, suggesting a relationship between lipid microdomains and the infectivity of these parasites.  相似文献   

15.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (B(max)) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in deltapi change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The deltapi change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a "raft-like" mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

16.
The thylakoids of cryptomonads are unique in that their lumens are filled with an electron-dense substance postulated to be phycobiliprotein. In this study, we used an antiserum against phycoerythrin (PE) 545 of Rhodomonas lens (gift of R. MacColl, New York State Department of Health, Albany, NY) and protein A-gold immunoelectron microscopy to localize this light-harvesting protein in cryptomonad cells. In sections of whole cells of R. lens labeled with anti-PE 545, the gold particles were not uniformly distributed over the dense thylakoid lumens as expected, but instead were preferentially localized either over or adjacent to the thylakoid membranes. A similar pattern of labeling was observed in cell sections labeled with two different antisera against PE 566 from Cryptomonas ovata. To determine whether PE is localized on the outer or inner side of the membrane, chloroplast fragments were isolated from cells fixed in dilute glutaraldehyde and labeled in vitro with anti-PE 545 followed by protein A-small gold. These thylakoid preparations were then fixed in glutaraldehyde followed by osmium tetroxide, embedded in Spurr, and sections were labeled with anti-PE 545 followed by protein A-large gold. Small gold particles were found only at the broken edges of the thylakoids, associated with the dense material on the lumenal surface of the membrane, whereas large gold particles were distributed along the entire length of the thylakoid membrane. We conclude that PE is located inside the thylakoids of R. lens in close association with the lumenal surface of the thylakoid membrane.  相似文献   

17.
Purification of phosphatidylethanolamine N-methyltransferase from rat liver   总被引:5,自引:0,他引:5  
Phosphatidylethanolamine (PE) N-methyltransferase catalyzes the synthesis of phosphatidylcholine by the stepwise transfer of methyl groups from S-adenosylmethionine to the amino head group of PE. PE N-methyltransferase was solubilized from a microsomal membrane fraction of rat liver using the nonionic detergent Triton X-100 and purified to apparent homogeneity. Specific activities of PE N-methyltransferase with PE, phosphatidyl-N-monomethylethanolamine (PMME), and phosphatidyl-N,N-dimethylethanolamine (PDME) as substrates were 0.63, 8.59, and 3.75 mumol/min/mg protein, respectively. The purified enzyme was composed of a single subunit with a molecular mass of 18.3 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methylation activities dependent on the presence of PE, PMME, and PDME and the 18.3-kDa protein co-eluted when purified PE N-methyltransferase was subjected to gel filtration on Sephacryl S-300 in the presence of 0.1% Triton X-100. All three methylation activities eluted with a Stokes radius 2.1 A greater than that determined for pure Triton micelles (molecular mass difference of 27.4 kDa). Two-dimensional analysis of PE N-methyltransferase employing nonequilibrium pH gradient gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the enzyme is composed of a single isoform. Analysis of enzyme activity using PE, PMME, and PDME at various Triton X-100 concentrations indicated the enzyme follows the "surface dilution" model proposed for other enzymes that act at the surface of mixed micelle substrates. Initial velocity data for all three lipid substrates (at fixed concentrations of Triton X-100) were highly cooperative in nature. Hill numbers for PMME and PDME ranged from 3 at 0.5 mM Triton to 6 at 2.0 mM Triton. All three methylation activities had a pH optimum of 10. These results provide evidence that a single membrane-bound enzyme catalyzes all three methylation steps for the conversion of PE to phosphatidylcholine.  相似文献   

18.
In this paper, we designed a quantitative model of biological membranes by the deposition of planar lipid membranes on solid substrates (called supported membranes), and immobilized biotinylated oligomers of hyaluronic acid (oligo-HA, 6-8 disaccharide units in length) to the membrane surface via neutravidin cross-linkers. By controlling the self-assembly of biotinylated lipid anchors, the mean distance between the oligo-HA molecules on the membrane could be controlled to nm accuracy. The adhesion and motility of pancreatic adenocarcinoma cells expressing different splice variants of the HA-binding cell surface receptor CD44 on these surfaces were investigated quantitatively. The combination of label-free, time-lapse imaging of living cells and statistical analysis suggests that the static morphology (global shape and cytoskeleton remodeling) of cells, their stochastic morphological dynamics, and the probability of directed motion reflect the metastatic behaviour of the cancer cells.  相似文献   

19.
This work presents a comparative study of proton transfer activity (PTA) of two cationic (+6) antimicrobial peptides, β‐structural arenicin‐2 and α‐helical melittin. A new approach was proposed for the detection of passive proton transfer by using proteoliposomes containing bacteriorhodopsin, which creates a small light‐induced electrochemical proton gradient ?ΔpH. Addition of several nanomoles of the peptides lowers ?ΔpH that is proximately indicative of the pore formation. The quantitative analysis of sigmoidal dependences of ?pH on the peptides concentration was carried out using liposomes prepared from PC, PC/PE, PC/PE/PI and PC/PG. Substitution of PC‐containing liposomes with PE‐containing ones, having negative spontaneous curvature, reduced the PTA of α‐helical melittin and increased that of β‐structural arenicin‐2. This result indicates an essential difference in the pore formation by these peptides. Further increase of PTA in response to arenicin‐2 (in contrast to melittin) was observed in the liposomes prepared from PC/PE/PI. The data analysis leads to the conclusion that PTA is influenced by (i) efficiency of the pore assemblage, which depends on the structure of pore‐forming peptides, and the spontaneous curvature of lipids and (ii) the presence of mobile protons in the polar head groups of phospholipids. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
J Mingins  D Stigter    K A Dill 《Biophysical journal》1992,61(6):1603-1615
We study the lateral headgroup interactions among phosphatidylcholine (PC) molecules and among phosphatidylethanolamine (PE) molecules in monolayers and extend our previous models. In this paper, we present an extensive set of pressure-area isotherms and surface potential experiments on monolayers of phospholipids ranging from 14 to 22 carbons in length at the n-heptane/water interface, over a wide range of temperature, salt concentration, and pH on the acid side. The pressure data presented here are a considerable extension of previous data (1) to higher surface densities, comprehensively checked for monolayer loss, and include new data on PE molecules. We explore surface densities ranging from extremely low to intermediate, near to the main phase transition, in which range the surface pressures and potentials are found to be independent of the chain length. Thus, these data bear directly on the headgroup interactions. These interactions are observed to be independent of ionic strength. PC and PE molecules differ strongly in two respects: (a) the lateral repulsion among PC molecules is much stronger than for PE, and (b) the lateral repulsion among PC molecules increases strongly with temperature whereas PE interactions are almost independent of temperature. Similarly, the surface potential for PC is found to increase with temperature whereas for PE it does not. In this and the following paper we show that these data from dilute to semidilute monolayers are consistent with a theoretical model that predicts that, independent of coverage, for PC the P-N+ dipole is oriented slightly into the oil phase because of the hydrophobicity of the methyl groups, increasingly so with temperature, whereas for PE the P-N+ dipole is directed into the water phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号