首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike other venomous predators, the parasitoid wasp Ampulex compressa incapacitates its prey, the cockroach Periplaneta americana, to provide a fresh food supply for its offspring. We first established that the wasp larval development, from egg laying to pupation, lasts about 8 days during which the cockroach must remain alive but immobile. To this end, the wasp injects a cocktail of neurotoxins to manipulate the behavior of the cockroach. The cocktail is injected directly into the head ganglia using biosensors located on the stinger. The head sting induces first 30 min of intense grooming followed by hypokinesia during which the cockroach is unable to generate an escape response. In addition, stung cockroaches survive longer, lose less water, and consume less oxygen. Dopamine contained in the venom appears to be responsible for inducing grooming behavior. For the hypokinesia, our hypothesis is that the injected venom affects neurons located in the head ganglia, which send descending tonic input to bioaminergic neurons. These, in turn, control the thoracic premotor circuitry for locomotion. We show that the activity of identified octopaminergic neurons from the thoracic ganglia is altered in stung animals. The alteration in the octopaminergic neurons' activity could be one of the mechanisms by which the venom modulates the escape circuit in the cockroach's central nervous system and metabolism in the peripheral system.  相似文献   

2.
According to the extended phenotype hypothesis, certain parasites manipulate the host's behaviour which ultimately enhances the transmission of parasite genes into the next generation. The parasitoid wasp Ampulex compressa attacks and stings its cockroach Periplaneta americana host and lays an egg on the cockroach's leg. Before the wasp's oviposition, the stung cockroach engages in excessive self-grooming for about 30 min. The prey location hypothesis posits that self-grooming may allow the wasp to easily locate its host before transporting it to the nest. To test this hypothesis, we manipulated the mobility of the stung cockroach under different spatial constraints. Latencies to locate stung cockroaches with unlimited movement were similar than latencies to locate stung, but motionless cockroaches irrespectively of spatial constraints. Wasps were less willing to lay eggs and seal an entrance to the burrow in treatments with motionless cockroaches which suggests that if the expected reproductive success is low, then parental investment decreases. Our results provide no support for the location hypothesis and call for further experimental investigation of the extended phenotype hypothesis in parasite–host interactions.  相似文献   

3.
The parasitic wasp Ampulex compressa stings a cockroach Periplaneta americana in the neck, toward the head ganglia (the brain and subesophageal ganglion). In the present study, our aim was to identify the head ganglion that is the target of the venom and the mechanisms by which the venom blocks the thoracic portion of the escape neuronal circuitry. Because the escape responses elicited by a wind stimulus in brainless and sham-operated animals were similar, we propose that the venom effect is on the subesophageal ganglion. Apparently, the subesophageal ganglion modulates the thoracic portion of the escape circuit. Recordings of thoracic interneuron responses to the input from the abdominal giant interneurons showed that the thoracic interneurons receive synaptic drive from these interneurons in control and in stung animals. Unlike normal cockroaches, which use both fast and slow motoneurons for producing rapid escape movements, stung animals activate only the slow motoneuron. However, we show that in stung animals, the fast motoneuron still can be recruited with bath application of pilocarpine, a muscarinic agonist. These results indicate that the descending control from the subesophageal ganglion is presumably exerted on the premotor thoracic interneurons to motoneurons connection of the thoracic escape circuitry. Accepted: 19 December 1998  相似文献   

4.
The parasitoid wasp Ampulex compressa stings and injects venom into the cockroach brain to induce a long-lasting hypokinetic state. This state is characterized by decreased responsiveness to aversive stimuli, suggesting the manipulation of a neuromodulatory system in the cockroach’s central nervous system. A likely candidate is the opioid system, which is known to affect responsiveness to stimuli in insects. To explore this possibility, we injected cockroaches with different opioid receptor agonists or antagonists before they were stung by a wasp and tested the escape behavior of these cockroaches to electric foot shocks. Antagonists significantly decreased the startle threshold in stung individuals, whereas agonists led to an increased startle threshold in controls. Yet, neither agonists nor antagonists had any effect on grooming. To further characterize the interaction between the venom and opioid receptors, we used an antenna-heart preparation. In un-stung individuals external application of crude venom completely inhibits antenna-heart contractions. In stung individuals the antenna-heart showed no contractions. Although acetylcholine restored contractions, the opioid receptor antagonist naloxone was unable to antagonize the venom inhibition. These results suggest that the venom of A. compressa might contribute to the manipulation of cockroach behavior by affecting the opioid system.  相似文献   

5.
The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces a transient paralysis of the front legs followed by grooming behavior and then by a long-term hypokinesia of its cockroach prey. Because the wasp's goal is to provide a living meal for its newborn larva, the behavioral changes in the prey are brought about by manipulating the host behavior in a way beneficial to the wasp and its offspring. To this end, the wasp injects its venom cocktail with two consecutive stings directly into the host's central nervous system. The first sting in the thorax causes a transient front leg paralysis lasting a few minutes. This paralysis is due to the presence of a venom component that induces a postsynaptic block of central cholinergic synaptic transmission. Following the head sting, dopamine identified in the venom appears to induce 30 min of intense grooming. During the long-term hypokinesia that follows the grooming, specific behaviors of the prey are inhibited while others are unaffected. We propose that the venom represses the activity of head ganglia neurons thereby removing the descending excitatory drive to the thoracic neurons.Abbreviations CNS central nervous system - DA dopamine - GI giant interneuron - PSP postsynaptic potential - SEG sub-esophageal ganglion - TI thoracic interneuron  相似文献   

6.
The parasitoid wasp A. compressa hunts cockroaches as a live food supply for its offspring. The wasp selectively injects venom into the cerebral ganglia of the prey to induce long-term hypokinesia [1-5], during which the stung cockroach, although not paralyzed, does not initiate spontaneous walking and fails to escape aversive stimuli. This allows the wasp to grab the cockroach by the antenna and walk it to a nest much like a dog on a leash. There, the wasp lays an egg on the prey, seals the nest, and leaves. The stung cockroach, however, does not fight to escape its tomb but rather awaits its fate, being consumed alive by the hatching larva over several days. We investigated whether the venom-induced hypokinesia is a result of an overall decrease in arousal or, alternatively, a specific decrease in the drive to initiate or maintain walking. We found that the venom specifically affects both the threshold for the initiation and the maintenance of walking-related behaviors. Nevertheless, the walking pattern generator itself appears to be intact. We thus report that the venom, rather than decreasing overall arousal, manipulates neuronal centers within the cerebral ganglia that are specifically involved in the initiation and maintenance of walking.  相似文献   

7.

Background

The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey''s cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile ‘zombie’, incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors.

Methodology and Principal Findings

We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls.

Conclusions and Significance

We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach''s drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach''s motivation to initiate walking without interfering with other non-related behaviors.  相似文献   

8.
The parasitoid wasp Ampulex compressa induces behavioral changes in the cockroach prey by injecting venom into its central nervous system. In contrast to most other venomous predators, the wasp's sting does not induce paralysis. Rather, the two consecutive stings in the thoracic and head ganglia induce three stereotypic behavioral effects. The prey behavior is manipulated in a way beneficial to the wasp and its offspring by providing a living meal for its newborn larva. The first sting in the thorax causes a transient front leg paralysis lasting a few minutes. This paralysis prevents the cockroach from fighting with its front legs, thereby facilitating the second sting in the head. A postsynaptic block of central synaptic transmission mediates this leg paralysis. Following the head sting, dopamine identified in the venom induces 30 minutes of intense grooming that appears to prevent the cockroach from straying until the last and third behavioral effect of hypokinesia commences. In this lethargic state that lasts about three weeks, the cockroach does not respond to various stimuli nor does it initiates movement. However, other specific behaviors of the prey are unaffected. We propose that the venom represses the activity of head ganglia neurons thereby removing the descending excitatory drive to specific thoracic neurons.  相似文献   

9.
Few studies in arthropods have documented to what extent local control centers in the thorax can support locomotion in absence of inputs from head ganglia. Posture, walking, and leg motor activity was examined in cockroaches with lesions of neck or circumoesophageal connectives. Early in recovery, cockroaches with neck lesions had hyper-extended postures and did not walk. After recovery, posture was less hyper-extended and animals initiated slow leg movements for multiple cycles. Neck lesioned individuals showed an increase in walking after injection of either octopamine or pilocarpine. The phase of leg movement between segments was reduced in neck lesioned cockroaches from that seen in intact animals, while phases in the same segment remained constant. Neither octopamine nor pilocarpine initiated changes in coordination between segments in neck lesioned individuals. Animals with lesions of the circumoesophageal connectives had postures similar to intact individuals but walked in a tripod gait for extended periods of time. Changes in activity of slow tibial extensor and coxal depressor motor neurons and concomitant changes in leg joint angles were present after the lesions. This suggests that thoracic circuits are sufficient to produce leg movements but coordinated walking with normal motor patterns requires descending input from head ganglia.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
The venom of the parasitoid wasp Ampulex compressa induces long-lasting hypokinesia in the cockroach prey. Previous work indicates that the venom acts in the subesophageal ganglion to indirectly affect modulation of thoracic circuits for locomotion. However, the target of the venom in the subesophageal ganglion, and the mechanism by which the venom achieves its effects are as yet unknown. While the stung cockroaches appear generally lethargic, not all behaviors were affected, indicating that the venom targets specific motor systems and not behavior in general. Stung cockroaches were observed "freezing" in abnormal positions. Reserpine, which depletes monoamines, mimics the behavioral effects of the venom. We treated cockroaches with antagonists to dopamine and octopamine receptors, and found that the dopamine system is required for normal escape response. Dopamine injection induces prolonged grooming in normal cockroaches, but not in stung, suggesting that the venom is affecting dopamine receptors, or targets downstream of these receptors, in the subesophageal ganglion. This dopamine blocking effect fades slowly over the course of several weeks, similar to the time course of recovery from hypokinesia. The similarity in the time courses suggests that the mechanism underlying the hypokinesia may be the block of the dopamine receptors.  相似文献   

11.
In insects, thoracic pattern generators are modulated by the two head ganglia, the supraesophageal ganglion (brain) and the subesophageal ganglion, which act as higher-order neuronal centers. To explore the contribution of each head ganglion to the initiation and maintenance of specific motor behaviors in cockroaches (Periplaneta americana), we performed specific lesions to remove descending inputs from either the brain or the subesophageal ganglion or both, and quantified the behavioral outcome with a battery of motor tasks. We show that ‘emergency’ behaviors, such as escape, flight, swimming or righting, are initiated at the thoracic level independently of descending inputs from the head ganglia. Yet, the head ganglia play a major role in maintaining these reflexively initiated behaviors. By separately removing each of the two head ganglia, we show that the brain excites flight behavior and inhibits walking-related behaviors, whereas the subesophageal ganglion exerts the opposite effects. Thus, control over specific motor behaviors in cockroaches is anatomically and functionally compartmentalized. We propose a comprehensive model in which the relative permissive versus inhibitory inputs descending from the two head ganglia, combined with thoracic afferent sensory inputs, select a specific thoracic motor pattern while preventing the others.  相似文献   

12.
1.  The wasp Ampulex compressa hunts cockroaches as food for her offspring. Stung cockroaches show little spontaneous movement although they are able to move. Wind stimuli to the cerci, which normally produce escape responses, are no longer effective in stung cockroaches. In the present paper, we have searched for neural correlates responsible for the impairment of the escape behavior by the venom.
2.  In control cockroaches, a typical motor response in the coxal depressor muscle to wind or tactile stimuli consists of an initial burst of the fast and slow depressor motoneurons followed by rhythmic discharges. In stung cockroaches, both stimuli evoke only a burst in the slow but no discharge activity in the fast depressor neuron. Intracellular recordings from the fast depressor motoneuron in stung cockroaches demonstrate that it still receives synaptic input, though subthreshold, from thoracic interneurons associated with the wind mediated escape circuitry. Discharge activity of the slow motoneuron lacks the rhythmic bursting pattern characteristic for slow walking in control animals.
3.  Yet, the venom affects neither the response of descending mechanosensitive giant interneurons to tactile stimuli nor the response of the abdominal giant interneurons to wind stimuli, both of which are known to excite the thoracic interneurons. The venom has also no effect on neuromuscular signal transmission.
  相似文献   

13.
The wasp Ampulex compressa injects a cocktail of neurotoxins into the brain of its cockroach prey to induce an enduring change in the execution of locomotory behaviors. Our hypothesis is that the venom injected into the brain indirectly alters the activity of monoaminergic neurons, thus changing the levels of monoamines that tune the central synapses of locomotory circuits. The purpose of the present investigation was to establish whether the venom alters the descending control, from the brain, of octopaminergic neurons in the thorax. This question was approached by recording the activity of specific identified octopaminergic neurons after removing the input from the brain or after a wasp sting into the brain. We show that the activity of these neurons is altered in stung and "brainless" animals. The spontaneous firing rate of these neurons in stung and brainless animals is approximately 20% that in control animals. Furthermore, we show that an identified octopamine neuron responds more weakly both to sensory stimuli and to direct injection of current in all treated groups. The alteration in the activity of octopamine neurons is likely to be part of the mechanism by which the wasp induces a change in the behavioral state of its prey and also affects its metabolism by reducing the potent glycolytic activator fructose 2,6-bisphosphate in leg muscle. To our knowledge, this is the first direct evidence of a change in electrical activity of specific monoaminergic neurons that can be so closely associated with a venom-induced change in behavioral state of a prey animal.  相似文献   

14.
The solitary wasp Ampulex compressa Fabr. (Sphecidae: Hymenoptera) stings the cockroach first in the thorax and then in the neck toward the suboesophageal ganglion. The first sting results in a short lasting and completely reversible paralysis. The second sting causes an irreversible change in the behaviour: undisturbed cockroaches seem to be lethargic, and if stimulated they are able to run with speeds that equal that of control animals.
Résumé La guêpe solitaire aculéate, Ampulex compressa Fabr. n'inflige en général à sa proie, la blatte Periplaneta americana L., que deux piqûres: l'une thoracique au niveau d'un patte prothoracique; la seconde dans le cou, au niveau du ganglion sousoesophagien. La première piqûre provoque une paralysie immédiate, complètement réversible en moins d'une minute. Les piqûres doubles provoquent également une paralysie, mais réversible dans un délai de plusieurs minutes. Au surplus, la deuxième piqûre influence irréversiblement le comportement de la blatte, qui présente un état léthargique mais est tout à fait capable de se déplacer rapidement après une stimulation des mécanorécepteurs cercaux par un léger souffle d'air au niveau du cerque.
  相似文献   

15.
Summary A method is described for recording with microelectrodes from central neurones in locusts,Schistocerca gregaria americana, that are free to perform a large fraction of their behavioural repertoire. This tethered preparation has been used to examine the individual responses of large neurones in the neck connectives to a range of sensory stimuli.From differences in the responses of the units examined and from their positions in the connective, as determined by dye iontophoresis, 31 separate neurones have been identified. The axons of these cells had relatively constant diameters and cord positions in different animals and appeared in both right and left connectives but with their positions mirror reversed. The majority of these 31 cells carried descending information from the head ganglia and under our experimental conditions, 7 were found to have wind stimulation as their strongest sensory input, 17 had visual stimulation, 4 had sound stimulation and 3 had proprioceptive input.Abbreviations DCMD descending contralateral movement detector (neurone) - DIMD descending ipsilateral movement detector (neurone)  相似文献   

16.
Direct injection of venom by a predatory wasp into cockroach brain   总被引:4,自引:0,他引:4  
In this article, we provide direct evidence for injection of venom by a wasp into the central nervous system of its cockroach prey. Venomous predators use neurotoxins that generally act at the neuromuscular junction, resulting in different types of prey paralysis. The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces grooming behavior, followed by a long-term lethargic state of its insect prey, thus ultimately providing a living meal for the newborn wasp larvae. These behavioral modifications are induced only when a sting is inflicted into the head. These unique effects of the wasp venom on prey behavior suggest that the venom targets the insect's central nervous system. The mechanism by which behavior modifying compounds in the venom transverse the blood-brain barrier to induce these central and long-lasting effects has been the subject of debate. In this article, we demonstrate that the wasp stings directly into the target ganglia in the head of its prey. To prove this assertion, we produced "hot" wasps by injecting them with (14)C radiolabeled amino acids and used a combination of liquid scintillation and light microscopy autoradiography to trace radiolabeled venom in the prey. To our knowledge, this is the first direct evidence documenting targeted delivery of venom by a predator into the brain of its prey.  相似文献   

17.
Consumption was measured of three commercially available cockroach gel baits (0.01 and 0.05% fipronil and 0.6% indoxacarb) by two pest blattellid (German cockroach, Blattella germanica L., and brownbanded cockroach, Supella longipalpa Fabricius) and three pest blattid [oriental cockroach, Blatta orientalis L., American cockroach, Periplaneta americana L., and smokybrown cockroach, Periplaneta fuliginosa (Serville)] species (Dictyoptera), and direct and secondary effects were quantified. All three baits were greatly preferred for consumption over dog food; however, virtually all consumption (ca. 98%) by pest blattids was gel baits containing sugar feeding stimulants and water. Pest blattid greater preference for gel baits was probably due to their greater need for nutrients in baits due to their greater cuticular water permeability and higher metabolism than the pest blattellids. Brownbanded cockroaches had lowest percentage gel bait selection. Pest blattellids consumed greater amounts of bait per g body weight than pest blattids. Cockroaches consumed more active ingredient than needed to cause mortality; however, based on bait consumption, a 30‐g tube of gel bait potentially killed from 394 to 6 966 adult cockroaches, depending on species. Mortality for all cockroach species was faster for adults (≥3 days) than for nymphs (≥7 days); however, most brownbanded cockroaches exposed to indoxacarb survived despite consuming 1.5‐ to >3‐fold more than other baits, suggesting low enzyme production by brownbanded cockroaches and consequently lower conversion of indoxacarb into its toxic form. Besides direct mortality, German cockroaches died from indirect effects: exposure to debris from other cockroaches that had direct access to the gel baits or bait contact without ingestion. Although maximization of bait consumption is important, factors that enhance secondary mortality and contact toxicity should also be considered.  相似文献   

18.
The escape behavior of the cockroach is a ballistic behavior with well characterized kinematics. The circuitry known to control the behavior lies in the thoracic ganglia, abdominal ganglia, and abdominal nerve cord. Some evidence suggests inputs may occur from the brain or suboesophageal ganglion. We tested this notion by decapitating cockroaches, removing all descending inputs, and evoking escape responses. The decapitated cockroaches exhibited directionally appropriate escape turns. However, there was a front-to-back gradient of change: the front legs moved little if at all, the middle legs moved in the proper direction but with reduced excursion, and the rear legs moved normally. The same pattern was seen when only inputs from the brain were removed, the suboesophageal ganglion remaining intact and connected to the thoracic ganglia. Electromyogram (EMG) analysis showed that the loss of or reduction in excursion was accompanied by a loss of or reduction in fast motor neuron activity. The loss of fast motor neuron activity was also observed in a reduced preparation in which descending neural signals were reversibly blocked via an isotonic sucrose solution superfusing the neck connectives, indicating that the changes seen were not due to trauma. Our data demonstrate that while the thoracic circuitry is sufficient to produce directional escape, lesion or blockage of the connective affects the excitability of components of the escape circuitry. Because of the rapidity of the escape response, such effects are likely due to the elimination of tonic descending inputs.  相似文献   

19.
One of the key questions in ecology is how animals optimally allocate their time in an environment with patchily distributed resources and competing organisms. Here we investigate the effects that an aphid predator, Macrolophus caliginosus (Wagner) (Hemiptera: Miridae), has on the searching behavior and the patch residence decisions of an aphid parasitoid, Aphidius colemani (Viereck) (Hymenoptera: Aphidiidae). A computer programme was designed that allowed the recording and saving of direct observations. The time allocated to different activities by a female parasitoid wasp in the presence or absence of the predator M. caliginosus was investigated. The experiments were conducted under controlled environment conditions using leaves of sweet pepper, Capsicum annuum L. (Solanaceae) and Myzus persicae (Sulzer) (Hemiptera: Aphididae) as the host plant–prey species system. The parasitoid spent significantly less time on ‘secondary’ activities, such as preening and resting, when the predator was present. Survival analysis showed that the parasitoid had a higher patch-leaving tendency when the predator was present.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号