首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y chromosome variation is determined by several confounding factors including mutation rate, effective population size, demography, and selection. Disentangling these factors is essential to better understand the evolutionary properties of the Y chromosome. We analyzed genetic variation on the Y chromosome, X chromosome, and mtDNA of the greater white-toothed shrew, a species with low variance in male reproductive success and limited sex-biased dispersal, which enables us to control to some extent for life-history effects. We also compared ancestral (Moroccan) to derived (European) populations to investigate the role of demographic history in determining Y variation. Recent colonization of Europe by a small number of founders (combined with low mutation rates) is largely responsible for low diversity observed on the European Y and X chromosomes compared to mtDNA. After accounting for mutation rate, copy number, and demography, the Y chromosome still displays a deficit in variation relative to the X in both populations. This is possibly influenced by directional selection, but the slightly higher variance in male reproductive success is also likely to play a role, even though the difference is small compared to that in highly polygynous species. This study illustrates that demography and life-history effects should be scrutinized before inferring strong selective pressure as a reason for low diversity on the Y chromosome.  相似文献   

2.
The level of genetic differentiation within and between evolutionary lineages of the common vole (Microtus arvalis) in Europe was examined by analyzing mitochondrial sequences from the control region (mtDNA) and 12 nuclear microsatellite loci (nucDNA) for 338 voles from 18 populations. The distribution of evolutionary lineages and the affinity of populations to lineages were determined with additional sequence data from the mitochondrial cytochrome b gene. Our analyses demonstrated very high levels of differentiation between populations (overall FST: mtDNA 70%; nucDNA 17%). The affinity of populations to evolutionary lineages was strongly reflected in mtDNA but not in nucDNA variation. Patterns of genetic structure for both markers visualized in synthetic genetic maps suggest a postglacial range expansion of the species into the Alps, as well as a potentially more ancient colonization from the northeast to the southwest of Europe. This expansion is supported by estimates for the divergence times between evolutionary lineages and within the western European lineage, which predate the last glacial maximum (LGM). Furthermore, all measures of genetic diversity within populations increased significantly with longitude and showed a trend toward increase with latitude. We conclude that the detected patterns are difficult to explain only by range expansions from separate LGM refugia close to the Mediterranean. This suggests that some M. arvalis populations persisted during the LGM in suitable habitat further north and that the gradients in genetic diversity may represent traces of a more ancient colonization of Europe by the species.  相似文献   

3.
Population genetic characteristics are shaped by the life-history traits of organisms and the geologic history of their habitat. This study provides a neutral framework for understanding the population dynamics and opportunities for selection in Semibalanus balanoides, a species that figures prominently in ecological and evolutionary studies in the Atlantic intertidal. We used mitochondrial DNA (mtDNA) control region (N = 131) and microsatellite markers (~40 individuals/site/locus) to survey populations of the broadly dispersing acorn barnacle from 8 sites spanning 800 km of North American coast and 1 site in Europe. Patterns of mtDNA sequence evolution were consistent with larger population sizes in Europe and population expansion at the conclusion of the last ice age, approximately 20?000 years ago, in North America. A significant portion of mitochondrial diversity was partitioned between the continents (?(ST) = 0.281), but there was only weak structure observed from mtDNA within North America. Microsatellites showed significant structuring between the continents (F(ST) = 0.021) as well as within North America (F(ST) = 0.013). Isolation by distance in North America was largely driven by a split between populations south of Cape Cod and all others (P < 10(-4)). The glacial events responsible for generating allelic diversity at mtDNA and microsatellites may also be responsible for generating selectable variation at metabolic enzymes in S. balanoides.  相似文献   

4.
Quaternary climatic oscillations and geographic barriers have strongly influenced the distribution and diversification of thermophilic species occurring in the Mediterranean Basin. The Western Mediterranean pond turtle, Mauremys leprosa, is widely distributed throughout the Iberian Peninsula, southern France and most of the Maghreb region, with two subspecies currently recognized. In this work, we used 566 samples, including 259 new individuals, across the species range, and sequenced two mitochondrial markers (cytochrome b gene and control region; 163 samples in a concatenated mtDNA dataset) and one nuclear intron (R35; 23 samples representing all identified sublineages) to study the evolutionary history of M. leprosa. We combined phylogenetic methods and phylogeographic continuous diffusion models with spatial analysis. Our results (1) show a high level of genetic structure in Morocco originated during the Pleistocene; (2) reveal two independent population expansion waves from Morocco to Tunisia and to southern Europe, which later expanded throughout the Iberian Peninsula, and (3) identify several secondary contact zones in Morocco. Our study also sheds new light on the role of geographical features (Moroccan mountains ranges and the Strait of Gibraltar) and Pleistocene climatic oscillations in shaping genetic diversity and structure of M. leprosa, and underlines the importance of the Maghreb as a differentiation centre harbouring distinct glacial refugia.  相似文献   

5.
Recent controversies surrounding models of modern human origins have focused on among-group variation, particularly the reconstruction of phylogenetic trees from mitochondrial DNA (mtDNA) and, the dating of population divergence. Problems in tree estimation have been seen as weakening the case for a replacement model and favoring a multiregional evolution model. There has been less discussion of patterns of within-group variation, although the mtDNA evidence has consistently shown the greatest diversity within African populations. Problems of interpretation abound given the numerous factors that can influence within-group variation, including the possibility of earlier divergence, differences in population size, patterns of population expansion, and variation in migration rates. We present a model of within-group phenotypic variation and apply it to a large set of craniometric data representing major Old World geographic regions (57 measurements for 1,159 cases in four regions: Europe, Sub-Saharan Africa, Australasia, and the Far East). The model predicts a linear relationship between variation within populations (the average within-group variance) and variation between populations (the genetic distance of populations to pooled phenotypic means). On a global level this relationship should hold if the long-term effective population sizes of each region are correctly specified. Other potential effects on withingroup variation are accounted for by the model. Comparison of observed and expected variances under the assumption of equal effective sizes for four regions indicates significantly greater within-group variation in Africa and significantly less within-group variation in Europe. These results suggest that the long-term effective population size was greatest in Africa. Closer examination of the model suggests that the long-term African effective size was roughly three times that of any other geographic region. Using these estimates of relative population size, we present a method for analyzing ancient population structure, which provides estimates of ancient migration. This method allows us to reconstruct migration history between geographic regions after adjustment for the effect of genetic drift on interpopulational distances. Our results show a clear isolation of Africa from other regions. We then present a method that allows direct estimation of the ancient migration matrix, thus providing us with information on the actual extent of interregional migration. These methods also provide estimates of time frames necessary to reach genetic equilibrium. The ultimate goal is extracting as much information from present-day patterns of human variation relevannt to issues of human origins. Our results are in agreement with mismatch distribution analysis of mtDNA, and they support a “weak Garden o Eden” model. In this model, modern-day variation can be explained by divergence from an initial source (perhaps Africa) into a number o small isolated populations, followed by later population expansion throughout our species. The major populationn expansions of Homo sapiens during and after the late Pleistocene have had the effect of “freezing” ancient patterns of population structure. While this is not the only possible scenario, we do note the close agreement with ecent analyses of mtDNA mismatch distibutions. © 1994 Wiley-Liss, Inc.  相似文献   

6.
We estimate parameters of a general isolation-with-migration model using resequence data from mitochondrial DNA (mtDNA), the Y chromosome, and two loci on the X chromosome in samples of 25-50 individuals from each of 10 human populations. Application of a coalescent-based Markov chain Monte Carlo technique allows simultaneous inference of divergence times, rates of gene flow, as well as changes in effective population size. Results from comparisons between sub-Saharan African and Eurasian populations estimate that 1500 individuals founded the ancestral Eurasian population approximately 40 thousand years ago (KYA). Furthermore, these small Eurasian founding populations appear to have grown much more dramatically than either African or Oceanian populations. Analyses of sub-Saharan African populations provide little evidence for a history of population bottlenecks and suggest that they began diverging from one another upward of 50 KYA. We surmise that ancestral African populations had already been geographically structured prior to the founding of ancestral Eurasian populations. African populations are shown to experience low levels of mitochondrial DNA gene flow, but high levels of Y chromosome gene flow. In particular, Y chromosome gene flow appears to be asymmetric, i.e., from the Bantu-speaking population into other African populations. Conversely, mitochondrial gene flow is more extensive between non-African populations, but appears to be absent between European and Asian populations.  相似文献   

7.
The genetic ancestry of Polynesians can be traced to both Asia and Melanesia, which presumably reflects admixture occurring between incoming Austronesians and resident non-Austronesians in Melanesia before the subsequent occupation of the greater Pacific; however, the genetic impact of the Austronesian expansion to Melanesia remains largely unknown. We therefore studied the diversity of nonrecombining Y chromosomal (NRY) and mitochondrial (mt) DNA in the Admiralty Islands, located north of mainland Papua New Guinea, and updated our previous data from Asia, Melanesia, and Polynesia with new NRY markers. The Admiralties are occupied today solely by Austronesian-speaking groups, but their human settlement history goes back 20,000 years prior to the arrival of Austronesians about 3,400 years ago. On the Admiralties, we found substantial mtDNA and NRY variation of both Austronesian and non-Austronesian origins, with higher frequencies of Asian mtDNA and Melanesian NRY haplogroups, similar to previous findings in Polynesia and perhaps as a consequence of Austronesian matrilocality. Thus, the Austronesian language replacement on the Admiralties (and elsewhere in Island Melanesia and coastal New Guinea) was accompanied by an incomplete genetic replacement that is more associated with mtDNA than with NRY diversity. These results provide further support for the "Slow Boat" model of Polynesian origins, according to which Polynesian ancestors originated from East Asia but genetically mixed with Melanesians before colonizing the Pacific. We also observed that non-Austronesian groups of coastal New Guinea and Island Melanesia had significantly higher frequencies of Asian mtDNA haplogroups than of Asian NRY haplogroups, suggesting sex-biased admixture perhaps as a consequence of non-Austronesian patrilocality. We additionally found that the predominant NRY haplogroup of Asian origin in the Admiralties (O-M110) likely originated in Taiwan, thus providing the first direct Y chromosome evidence for a Taiwanese origin of the Austronesian expansion. Furthermore, we identified a NRY haplogroup (K-P79, also found on the Admiralties) in Polynesians that most likely arose in the Bismarck Archipelago, providing the first direct link between northern Island Melanesia and Polynesia. These results significantly advance our understanding of the impact of the Austronesian expansion and human history in the Pacific region.  相似文献   

8.
To investigate the origins and relationships of Australian and Melanesian populations, 611 males from 18 populations from Australia, Melanesia, and eastern/southeastern Asia were typed for eight single-nucleotide polymorphism (SNP) loci and seven short tandem-repeat loci on the Y chromosome. A unique haplotype, DYS390.1del/RPS4Y711T, was found at a frequency of 53%-69% in Australian populations, whereas the major haplotypes found in Melanesian populations (M4G/M5T/M9G and DYS390.3del/RPS4Y711T) are absent from the Australian populations. The Y-chromosome data thus indicate independent histories for Australians and Melanesians, a finding that is in agreement with evidence from mtDNA but that contradicts some analyses of autosomal loci, which show a close relationship between Australian and Melanesian (specifically, highland Papua New Guinean) populations. Since the Australian and New Guinean landmasses were connected when first colonized by humans > or =50,000 years ago but separated some 8,000 years ago, a possible way to reconcile all the genetic data is to infer that the Y-chromosome and mtDNA results reflect the past 8,000 years of independent history for Australia and New Guinea, whereas the autosomal loci reflect the long preceding period of common origin and shared history. Two Y-chromosome haplotypes (M119C/M9G and M122C/M9G) that originated in eastern/southeastern Asia are present in coastal and island Melanesia but are rare or absent in both Australia and highland Papua New Guinea. This distribution, along with demographic analyses indicating that population expansions for both haplotypes began approximately 4,000-6,000 years ago, suggests that these haplotypes were brought to Melanesia by the Austronesian expansion. Most of the populations in this study were previously typed for mtDNA SNPs; population differentiation is greater for the Y chromosome than for mtDNA and is significantly correlated with geographic distance, a finding in agreement with results of similar analyses of European populations.  相似文献   

9.
We assess the genetic history and population structure of Cicada barbara in Morocco and the Iberian Peninsula, based on analysis of the mitochondrial cytochrome b gene. The divergence between Morocco and the Iberian Peninsula populations was strongly corroborated by the molecular data, suggesting genetically isolated populations with a low level of gene flow. The Ceuta population from Spanish North Africa was more similar to the Iberian populations than the surrounding Moroccan populations, suggesting that the Strait of Gibraltar has not been acting as a strict barrier to dispersal while the Rif Mountains have. The Iberian Peninsula specimens showed a signature of demographic expansion before that which occurred in Morocco, but some of the assumptions related to the demographic parameters should be considered with caution due to the small genetic variation found. The high haplotype diversity found in Morocco implies higher demographic stability than in the Iberian Peninsula populations. These results do not, however, suggest a Moroccan origin for Iberian cicadas; but the most northwest region in Africa, such as Ceuta, might have acted as a southern refuge for Iberian cicadas during the most severe climatic conditions, from where they could expand north when climate improved. The separation of two subspecies within C. barbara (C. barbara lusitanica and C. barbara barbara) finds support with these results.  相似文献   

10.
The Bechstein’s bat (Myotis bechsteinii) is a rare sedentary bat considered to be highly reliant on the presence of ancient woodland. Understanding the genetic connectivity and population structure of such elusive mammals is important for assessing their conservation status. In this study, we report the genetic diversity and structure of M. bechsteinii across Britain and Europe. Assessments were made using 14 microsatellite markers and a 747 bp region of the mitochondrial cytochrome b gene. Nuclear DNA (microsatellites) showed high levels of genetic diversity and little inbreeding across the species range, though genetic diversity was slightly lower in Britain than in mainland Europe. Bayesian and spatial PCA analysis showed a clear separation between the British and European sites. Within Europe, the Italian population south of the Alps was isolated from the other sites. In Britain, there was genetic structuring between the northern and southern part of the geographical range. Despite there being little genetic divergence in mitochondrial DNA (mtDNA) sequences throughout most of Europe, the mtDNA patterns in Britain confirmed this separation of northern and southern populations. Such genetic structuring within Britain—in the absence of any obvious physical barriers—suggests that other factors such as land-use may limit gene-flow.  相似文献   

11.
The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.  相似文献   

12.
The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.  相似文献   

13.
To better understand the evolutionary dynamics of repetitive sequences in human sex chromosomes, we have analyzed seven new X/Y homologous microsatellites located within PCDHX/Y, one of the two recently described gene pairs in the Xq21.3/Yp11.2 hominid-specific homology block, in samples from Portugal and Mozambique. Sharp differences were observed on X/Y allele distributions, concerning both the presence of private alleles and a different modal repeat length for X-linked and Y-linked markers, and this difference was statistically significant. Higher diversity was found in X-linked microsatellites than in their Y chromosome counterparts; when comparing populations, Mozambicans showed more allele diversity for the X chromosome, but the contrary was true for the Y chromosome microsatellites. Evolutionary patterns, relying on intragenic PCDHX/Y SNPs, also revealed distinct scenarios for X and Y chromosomes. Greater microsatellite diversity was displayed by African X chromosomes within the most common haplotypes shared by both populations, whereas higher microsatellite diversity was found in Portugal for the ancestral Y chromosome haplotype. The most frequent PCDHY haplotype in Portuguese was the derived one, and it was not found in Mozambicans. TMRCA estimated by the rho parameter resulted in 13,700 years (7,500-20,000 years), which is consistent with a recent, post-Out-of-Africa origin for this haplotype. In conclusion, the newly described microsatellite loci generally displayed greater X-linked to Y-linked diversity and this pattern was also detected with slower evolving markers, with a remarkable differentiation between populations observed for Y chromosome haplotypes and, thus, greater divergence among Y chromosomes in human populations.  相似文献   

14.
Mitochondrial DNA variation was used to examine population structure in a widespread, marine-dispersed species, Birgus latro . Crabs were collected from eight locations throughout the species' Indo-Pacific distribution. Purified mtDNA from 160 individuals was cut with five restriction enzymes, revealing high haplotype diversity (0.96) and moderate nucleotide diversity (0.75%). Island populations from the Indian Ocean (Christmas I.) and Pacific Ocean were significantly different ( G ST= 0.37) and had distinct mtDNA lineages with a net sequence divergence of 1.4%. Pacific island populations had diverged in a manner consistent with isolation by distance, with only the most peripheral populations being significantly different. The results for mtDNA are largely concordant with those from allozymes, although estimates of gene flow between the Indian and Pacific Oceans were much lower when based on mtDNA. The mtDNA phylogeny also permitted a deeper examination of the evolutionary and demographic history of Birgus latro . Long-term separation of populations is evident in the complete phylogenetic subdivision of mtDNA lineages between the Indian and Pacific Ocean populations sampled. The starlike phylogeny of alleles from the Pacific suggests a rapid population expansion in the Pacific during the Pleistocene. Including information about allele phylogeny, as well as distribution and frequency, obscured contemporary population structure, but provided unique insights into the evolutionary history of the species.  相似文献   

15.
Y chromosomal DNA variation and the peopling of Japan.   总被引:26,自引:12,他引:26       下载免费PDF全文
Four loci mapping to the nonrecombining portion of the Y chromosome were genotyped in Japanese populations from Okinawa, the southernmost island of Japan; Shizuoka and Aomori on the main island of Honshu; and a small sample of Taiwanese. The Y Alu polymorphic (YAP) element is present in 42% of the Japanese and absent in the Taiwanese, confirming the irregular distribution of this polymorphism in Asia. Data from the four loci were used to determine genetic distances among populations, construct Y chromosome haplotypes, and estimate the degree of genetic diversity in each population and on different Y chromosome haplotypes. Evolutionary analysis of Y haplotypes suggests that polymorphisms at the YAP (DYS287) and DXYS5Y loci originated a single time, whereas restriction patterns at the DYS1 locus and microsatellite alleles at the DYS19 locus arose more than once. Genetic distance analysis indicated that the Okinawans are differentiated from Japanese living on Honshu. The data support the hypotheses that modern Japanese populations have resulted from distinctive genetic contributions involving the ancient Jomon people and Yayoi immigrants from Korea or mainland China, with Okinawans experiencing the least amount of admixture with the Yayoi. It is suggested that YAP+ chromosomes migrated to Japan with the Jomon people > 10,000 years ago and that a large infusion of YAP- chromosomes entered Japan with the Yayoi migration starting 2,300 years ago. Different degrees of genetic diversity carried by these two ancient chromosomal lineages may be explained by the different life-styles (hunter-gatherer versus agriculturalist). of the migrant groups, the size of the founding populations, and the antiquities of the founding events.  相似文献   

16.
Identifying genetically and phenotypically distinct populations of threatened species is critical if we are to delineate appropriate plans for their conservation. We conducted an integrated analysis of population genetic structure, historical demographic events, current gene flow (all based on mtDNA sequences) and morphological variation of three geographically separated groups of populations of Dupont's lark Chersophilus duponti, located in the Iberian Peninsula (three populations), Morocco (two populations), and Tunisia (one population). Unusually, this lark species is the only one among the genus Chersophilus. Our results revealed the early historical divergence of an eastern Dupont's lark lineage (in Tunisia) and a western lineage (in Morocco and Spain), consistent with subspecies taxonomy and distribution. The western lineage subsequently split into two lineages, following the isolation of Iberian and African populations. Such pattern of historical differentiation caused great population genetic structure, with differences among geographic areas explaining more than 80% of total genetic variation. Mismatch distributions and coalescent estimates of divergence time showed that lineage divergence was associated with sudden population expansion events, which apparently took place during the last glaciation, when steppe habitats were widespread across the Mediterranean region. Extant populations from different geographic areas hardly shared any haplotype (only one out of 16 ND2 haplotypes was shared by Tunisian and Moroccan Dupont's larks), and consequently gene flow between geographic areas was found to be virtually absent. Apart from showing great genetic differentiation, Dupont's larks from different geographic areas were morphologically distinct, showing substantial variation in body size and feeding-related traits (length of feet and bill). We conclude that Dupont's lark populations isolated in the Iberian Peninsula, Morocco, and Tunisia are distinct evolutionary entities and should be considered as such in conservation plans. Such circumstance sets a daunting conservation challenge that exemplifies the need of incorporating knowledge of historical processes to our general understanding of the demography of threatened species.  相似文献   

17.
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.  相似文献   

18.
Recent empirical and theoretical studies on mitochondrial DNA (mtDNA) variation in higher animals have suggested that the extent of mtDNA polymorphism is largely affected by spatial population subdivision. To examine this we studied mtDNA polymorphism in two subspecies of Drosophila sulfurigaster: D. s. albostrigata and D. s. bilimbata. Drosophila sulfurigaster albostrigata is mainly distributed on the mainland of Southeast Asia. In contrast, D. s. bilimbata forms discontinuous populations on many islands scattered in the Pacific Ocean. Because of the difference in their distribution patterns, the two subspecies are thought to be different in the extent of spatial population subdivision. mtDNA was isolated from greater than 50 isofemale strains for each subspecies and were analyzed by eight restriction endonucleases. Nucleotide diversity within a population was higher in D. s. albostrigata than in D. s. bilimbata. However, haplotype diversity was 1.6 times greater in D. s. bilimbata (0.85) than in D. s. albostrigata (0.53). The large difference in overall heterogeneity was attributed to the difference in interpopulational nucleotide diversity. For the two subspecies the proportion of interpopulational gene diversity in a subdivided population was calculated to be 0.54 in D. s. bilimbata and 0.40 in D. s. albostrigata. These observations indicate that spatial population subdivision is a major factor in determining mtDNA polymorphism in these subspecies. The extent of mtDNA divergence between the subspecies was very high. The average nucleotide divergence between them was 7.6%, which is almost the interspecific level reported for other Drosophila species. The cause of the high degree of mtDNA divergence is discussed.  相似文献   

19.
Both the Cytb gene of mtDNA and Y chromosome markers were studied in a relatively large sample of brown hares (L. europaeus) from Europe and Anatolia (Turkey and Israel), together with other seven Lepus species, in order to enable comparative analysis of possible sex-specific gene flow. Furthermore, Y chromosome markers were compared with data from biparentally inherited markers in an attempt to understand whether or not their pattern of distribution was congruent with that of allozymes or whether they rather matched mtDNA phylogenies, with which they share uniparental inheritance. Consistent with the general observation, levels of interspecific genetic variability were very low for the Y chromosome markers compared with mtDNA. Moreover, lack of interspecific variation for the Y-DNA studied within Lepus genus rendered these markers improper for any further phylogenetic analysis. With the highest nucleotide diversity in Anatolia compared with Europe, both marker systems confirmed an unbroken species history in Anatolia, corroborated the hypothesis of continuous gene flow from Anatolia's neighbouring regions, and supported the idea of a quick postglacial colonization followed by expansion of the species in large parts of Europe. Phylogenetic analysis under mtDNA revealed the existence of four different haplogroups with a well defined distribution across Europe and Anatolia. Both genetic systems supported the deep separation of Anatolian and European lineages of L. europaeus. Nevertheless, Anatolian Y-DNA lineages extended across a longer geographic distance in south-eastern Europe than Anatolian mtDNA haplotypes, probably as a result of higher female philopatry that makes mtDNA introgression more difficult in brown hares.  相似文献   

20.
Species whose geographical distribution encompasses both mainland and island populations provide an ideal system for examining isolation and genetic divergence. In this study, paternally transmitted chloroplast DNA (cpDNA) and maternally transmitted mitochondrial DNA (mtDNA) were used to estimate population structure and phylogeography of Pinus luchuensis, a species found in eastern China (ssp. hwangshanensis), Taiwan (ssp. taiwanensis), and the Ryukyu Archipelago (ssp. luchuensis). Gene genealogies of both mtDNA and cpDNA reveal two major lineages. Molecular dating indicates that these lineages diverged before the colonization of P. luchuensis subspecies in Taiwan and the Ryukyu Archipelago. Both mtDNA and cpDNA show a lack of correspondence between molecular phylogeny and subspecies designation. Phylogeographical analysis suggests that paraphyly of the subspecies is the result of recent divergence rather than secondary contacts. In spite of the short divergence history of P. luchuensis on islands, the island populations show the same degree of genetic divergence as mainland populations. Low levels of genetic diversity in the mainland ssp. hwangshanensis suggest demographic bottlenecks. In contrast, the high heterogeneity of genetic composition for island populations is likely to be associated with a history of multiple colonization from the mainland. The spatial apportionment of organelle DNA polymorphisms is consistent with a pattern of stepwise colonization on island populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号