首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study whether the body fat-reducing potential of conjugated linoleic acid (CLA) could be increased through dietary manipulations, the effects of the combination of CLA with different proteins, fats, and sesamin were examined in rats. Male rats were fed diets containing 1% CLA or linoleic acid (LA) in combination with different proteins (20% of casein or soybean protein), fats (7% perilla oil or soybean oil) and 0.2% sesamin (SES) for 3 or 4 weeks. When the dietary fat source was soybean oil, CLA, as compared with LA, significantly reduced weights of epididymal and perirenal adipose tissues, irrespective of the dietary protein sources. However, the highest reducing effect was shown when soybean protein was given as a protein source. SES stimulated the reduction of epididymal and perirenal adipose tissue weights in both protein diets. In contrast, CLA increased the weight of brown adipose tissue, and SES further increased it in combination with soybean oil but not with perilla oil. No effect of dietary manipulation was observed on serum leptin and TNF-alpha levels. Thus, the body fat-reducing potential of CLA can be increased by an appropriate combination with food factors that may stimulate fatty acid beta-oxidation.  相似文献   

2.
Isomers of conjugated linoleic acid (CLA), unsaturated fatty acids found in ruminant meats and dairy products, have been shown to reduce adiposity and alter lipid metabolism in animal, human, and cell culture studies. In particular, dietary CLA decreases body fat and increases lean body mass in certain rodents, chickens, and pigs, depending on the isomer, dose, and duration of treatment. However, the effects of CLA on human adiposity are conflicting because these studies have used different mixtures and levels of CLA isomers and diverse subject populations. Potential antiobesity mechanisms of CLA include decreased preadipocyte proliferation and differentiation into mature adipocytes, decreased fatty acid and triglyceride synthesis, and increased energy expenditure, lipolysis, and fatty acid oxidation. This review will address the current research on CLA's effects on human and animal adiposity and lipid metabolism as well as potential mechanism(s) responsible for CLA's antiobesity properties.  相似文献   

3.
NMR data on lipid hydroperoxides is scarce. In this study, hydroperoxides were produced from methyl 9-cis,11-trans-octadecadienoate and from methyl 10-trans,12-cis-octadecadienoate by autoxidation in the presence of 20% of alpha-tocopherol. Ten different hydroperoxides were isolated from the autoxidation mixtures of the two conjugated linoleic acid (CLA) methyl esters by SPE and HPLC. The assignment of the 1H and 13C NMR spectra of these hydroperoxides was accomplished by 2D NMR experiments and by spectral simulations. Substitution of a hydroperoxyl group at the allylic position in CLA methyl esters induced a 53.93 ppm downfield shift on the hydroperoxyl-bearing carbon resonance. The effects on the olefinic alpha, beta, gamma, and delta carbon resonances were -3.45, +4.96, -1.22, and +4.42 ppm, respectively. Furthermore, the solvent effects of deuterochloroform, deuteroacetone, and deuterobenzene on the 13C resonances of the hydroperoxides suggest that deuterochloroform is the appropriate solvent for 13C NMR studies on mixtures of lipid hydroperoxides.  相似文献   

4.
Conjugated linoleic acids (CLA) are positional and geometric dienoic isomers of linoleic acid. Dietary CLA supplementation leads to a drop in fat mass in various species, including in humans. The t10,c12-CLA isomer is responsible for this anti-obesity effect. The reduction of fat mass is especially dramatic in the mouse, in which it is associated with severe hyperinsulinemia, insulin resistance and massive liver steatosis. The origin of these adverse side effects and putative chronology of events leading to CLA-mediated lipoatrophic syndrome are presented and discussed in this review.  相似文献   

5.
The purpose of this study was to clarify the effect of conjugated linoleic acid on lipid accumulation in adipose tissue. Sprague-Dawley rats were fed a diet containing 2% conjugated linoleic acid for 1, 3, 6, and 12 weeks. In rats fed 2% conjugated linoleic acid, the weight of perirenal white adipose tissue was comparable with that of rats fed a conjugated linoleic acid-free diet. For fatty acid composition of perirenal white adipose tissue, both 16:1/16:0 and 18:1/18:0 ratios were significantly lower in the conjugated linoleic acid-fed group than the control group. Although there was no remarkable difference in serum triglyceride, total cholesterol, and phospholipid levels between dietary groups, serum leptin level was significantly lower than the control group, and lipid content in the perirenal white adipose tissue exerted a tendency toward low compared to the control value at 1-week feeding. On the other hand, leptin level in perirenal white adipose tissue was significantly lower in the conjugated linoleic acid-fed group than the control group at 12-week feeding. In conclusion, these observations suggest dietary conjugated linoleic acid is an acute reducer of serum leptin level. This may afford an explanation of the mechanism of anti-obesity effect in conjugated linoleic acid.  相似文献   

6.
《Small Ruminant Research》2009,85(1-3):47-53
Two experiments were carried out to study the effects of supplementing the ration of lactating ewes with vegetable fats (sunflower oil, SO or hydrogenated palm oil, HPO; HIDROPALM®) on diet digestibility, milk yield and milk composition, and on the concentration of the conjugated linoleic acid (CLA) C18:2 cis-9 trans-11 and C18:1 trans-11 (vaccenic acid, VA) and other main fatty acids in milk fat. Treatments involved a control diet, without added oil, and 2 diets supplemented with either 12 g/kg SO or 12 g/kg HPO on a dry matter (DM) basis. In the first experiment, 6 non-pregnant, non-lactating Lacaune ewes were used following a 3 × 3 replicated Latin Square design. Addition of vegetable fat supplement to the diet increased digestibility of DM, organic matter (OM) and crude protein (CP), but did not affect that of the ether extract (EE), neutral detergent fibre (NDF) or acid detergent fibre (ADF). In the second experiment, 60 Lacaune dairy ewes mid-way through lactation (120 ± 12 days in milk, 0.98 ± 0.03 kg/day average milk yield) were divided into three equal-sized groups each of which was assigned to one of the three experimental diets for 4 weeks. Compared with the control treatment, supplementation with HPO increased milk yield and energy-corrected milk. But neither vegetable fat supplement modified percentages of fat and protein in milk. Supplementation with HPO increased C14:1, C16:1 and C16:0 content and reduced C18:0 and C18:1 cis-9 content in milk fat. Supplementation with SO increased the VA content in milk fat by 36% and that of cis-9 trans-11 CLA by 29% in comparison with the control diet. Supplementation with HPO led to milk fat with 15% more cis-9 trans-11 CLA than control milk. In conclusion, adding a moderate dose of HPO or SO to the diets increased CLA concentration in milk fat. Nevertheless, supplementation with SO was more effective than HPO in increasing CLA concentration in milk fat and reducing the atherogenicity index, improving milk quality from the human health standpoint.  相似文献   

7.
8-iso-PGF isoprostane (IP) is one of the most-used markers of lipid peroxidation in experimental models and humans. After its formation, it is promptly metabolized to 2,3 dinor (DIN) in peroxisomes.Conjugated linoleic acid (CLA) is preferentially β-oxidized in peroxisomes which may compete with IP, and thereby may affect its metabolism.In order to verify whether CLA is able to influence IP formation and/or metabolism and to explain the mechanism, we challenged rats supplemented with CLA or with triolein (as a control fatty acid), with a single dose of carbon tetrachloride (CCl4) or of bacterial lipopolysaccharide (LPS). The results showed that IP and its precursor arachidonic acid hydroperoxide, as well as malondialdheyde (MDA), increase significantly in the liver of rats challenged with CCl4, irrespective of the diet, while in LPS-treated rats only nitrites in liver and isoprostane in plasma increase. On the other hand, the peroxisomal β-oxidation products of IP, the DIN, is significantly lower in the CLA group with respect to control and triolein groups.To further investigate whether this is due to competition between CLA and IP at the cellular level, we incubated human fibroblasts from healthy subjects or patients with adrenoleukodystrophy (ALD), with CLA and/or commercially available IP. The rationale of this approach is based on the deficient peroxisomal β-oxidation of fibroblasts from ALD patients, leading to a reduced formation of DIN. In both normal and ALD cells, the presence of CLA significantly inhibits the formation of DIN from IP.We may conclude that both in vitro and in vivo studies strongly suggest that CLA may impair IP catabolism in peroxisomes. Consequently an increase of IP, as a sole result of CLA intake, cannot be considered as a marker of lipid peroxidation.  相似文献   

8.
The aim of the present study was to determine the effects of conjugated linoleic acid (CLA) on lipid and fatty acid metabolism in Atlantic salmon. The overall objective being to test the hypotheses that CLA has beneficial effects in salmon including growth enhancement, improved flesh quality through decreased adiposity and lipid deposition thereby minimising detrimental effects of feeding high fat diets, and increased nutritional quality through increased levels of beneficial fatty acids including n-3 highly unsaturated fatty acids (HUFA) and CLA itself. Salmon smolts were fed diets containing two levels of fish oil (low, approximately 18% and high, approximately 34%) containing three levels of CLA (a 1:1 mixture of 9-cis,trans-11 and trans-10,cis-12. at 0, 1 and 2% of diet) for 3 months and the effects on growth performance, liver and muscle (flesh) lipid contents and class compositions, and fatty acid compositions determined. The diets were also specifically formulated to investigate whether the effects of CLA, if any, were more dependent upon absolute content of CLA in the diet (as percentage of total diet) or the relative level of CLA to other fatty acids. Dietary CLA in salmon smolts had no effect on growth parameters or biometric parameters. However, there was a clear trend of increased total lipid and triacylglycerol contents in both liver and flesh in fish fed CLA, particularly in fish fed the high oil diets. Finally, CLA was incorporated into tissue lipids, with levels in flesh being 2-fold higher than in liver, but importantly, incorporation in liver was at the expense of saturated and monounsaturated fatty acids whereas in flesh it was at the expense of n-3HUFA.  相似文献   

9.
This paper describes the in vitro effect of conjugated linoleic acid (CLA) on fatty acid biosynthesis. Among the rat liver enzymes involved in fatty acid biosynthesis, fatty acid synthetase (FAS) showed the largest activity fluctuation with the types of fatty acids. Of the fatty acids, CLA was the most potent inhibitor of FAS, and the 9c, 11t-rather than the 10t, 12c-isomer showed greater inhibition. CLA also significantly lowered the incorporation of [14C]-acetate into phospholipid in breast cancer cells, supporting the view that CLA inhibits fatty acid biosynthesis through the interaction with FAS.  相似文献   

10.
Dietary conjugated linoleic acid (CLA) affects fat deposition and lipid metabolism in mammals, including livestock. To determine CLA effects in Atlantic salmon (Salmo salar), a major farmed fish species, fish were fed for 12 weeks on diets containing fish oil or fish oil with 2% and 4% CLA supplementation. Fatty acid composition of the tissues showed deposition of CLA with accumulation being 2 to 3 fold higher in muscle than in liver. CLA had no effect on feed conversion efficiency or growth of the fish but there was a decreased lipid content and increased protein content after 4% CLA feeding. Thus, the protein:lipid ratio in whole fish was increased in fish fed 4% CLA and triacylglycerol in liver was decreased. Liver beta-oxidation was increased whilst both red muscle beta-oxidation capacity and CPT1 activity was decreased by dietary CLA. Liver highly unsaturated fatty acid (HUFA) biosynthetic capacity was increased and the relative proportion of liver HUFA was marginally increased in salmon fed CLA. CLA had no effect on fatty acid Delta6 desaturase mRNA expression, but fatty acid elongase mRNA was increased in liver and intestine. In addition, the relative compositions of unsaturated and monounsaturated fatty acids changed after CLA feeding. CLA had no effect on PPARalpha or PPARgamma expression in liver or intestine, although PPARbeta2A expression was reduced in liver at 4% CLA feeding. CLA did not affect hepatic malic enzyme activity. Thus, overall, the effect of dietary CLA was to increase beta-oxidation in liver, to reduce levels of total body lipid and liver triacylglycerol, and to affect liver fatty acid composition, with increased elongase expression and HUFA biosynthetic capacity.  相似文献   

11.
Conjugated linoleic acid (CLA) has shown a number of health benefits, particularly on controlling body fat while improving lean mass. As one of CLA cognates, conjugated nonadecadienoic acid (CNA, 19-carbon conjugated fatty acid) has been previously reported to have greater efficacy on body fat control. In this report, we compared the efficacy of dietary CLA and CNA on body fat regulation and also compared the mechanism of body fat control using a mouse model. Effects of 0.1% dietary CNA on body fat reduction were comparable to that of 0.5% dietary CLA. The mechanisms of dietary CNA on body fat control were similar to those of CLA: increased energy expenditure and increased fatty acid β-oxidation. Dietary CNA, but not CLA, also improved expression of hormone-sensitive lipase from white adipose tissue, and this may help explain how CNA has better efficacy on body fat control than CLA. Dietary CNA had similar effects as CLA on liver weights; however, unlike CLA, CNA improved glucose tolerance. Thus, CNA has potential to be used as a pharmacological agent to assist current efforts to reduce obesity with less adverse effects than CLA.  相似文献   

12.
To determine possible mechanisms of action that might explain the nutrient partitioning effect of betaine and conjugated linoleic acid (CLA) in Iberian pigs and to address potential adverse effects, twenty gilts were restrictively fed from 20 to 50 kg BW Control, 0.5% betaine, 1% CLA or 0.5% betaine + 1% CLA diets. Serum hormones and metabolites profile were determined at 30 kg BW and an oral glucose test was performed before slaughter. Pigs were slaughtered at 50 kg BW and livers were obtained for chemical and histological analysis. Decreased serum urea in pigs fed betaine and betaine + CLA diets (11%; P = 0.0001) indicated a more efficient N utilization. The increase in serum triacylglycerol (58% and 28%, respectively; P = 0.0098) indicated that CLA and betaine + CLA could have reduced adipose tissue triacylglycerol synthesis from preformed fatty acids. Serum glucose, low-density lipoprotein (LDL) cholesterol and non-esterified fatty acids were unaffected. CLA and betaine + CLA altered serum lipids profile, although liver of pigs fed CLA diet presented no histopathological changes and triglyceride content was not different from Control pigs. Compared with controls, serum growth hormone decreased (20% to 23%; P = 0.0209) for all treatments. Although serum insulin increased in CLA, and especially in betaine + CLA pigs (28% and 83%; P = 0.0001), indices of insulin resistance were unaffected. In conclusion, CLA, and especially betaine + CLA, induced changes in biochemical parameters and hormones that may partially explain a nutrient partitioning effect in young pigs. Nevertheless, they exhibited weak, although detrimental, effects on blood lipids. Moreover, although livers were chemically and histologically normal, pigs fed CLA diet challenged with a glucose load had higher serum glucose than controls.  相似文献   

13.
Conventional beliefs surrounding the linolenic acid (LNA; cis-9 cis-12 cis-15 C18:3) biohydrogenation (BH) pathway propose that it converts to stearic acid (SA) without the formation of conjugated linoleic acid (CLA) as intermediate isomers. However, an advanced study (Lee and Jenkins, 2011) verified that LNA BH yields multiple CLAs. This study utilized the stable isotope tracer to investigate the BH intermediates of 13C-LNA with different pH conditions (5.5 and 6.5). The 13C enrichment was calculated as a 13C/12C ratio of labeled minus unlabeled. After 24 h, eight CLA isomers were significantly enriched on both pH treatment, this result verifies that these CLAs originated from 13C-LNA BH which supports the results of Lee and Jenkins (2011). The enrichment of cis-cis double bond CLAs (cis-9 cis-11 and cis-10 cis-12 CLA) were significantly higher at low pH conditions. Furthermore, the concentration of cis-10 cis-12 CLA at low pH was four times higher than at high pH conditions after a 3 h incubation. These differences support the LNA BH pathways partial switch under different pH conditions, with a strong influence on the cis-cis CLA at low pH. Several mono-, di-, and tri-enoic fatty acid isomers were enriched during 24 h of incubation, but the enrichment was decreased or restricted at low pH treatment. Based on these results, it is proposed that low pH conditions may cause a changed or limited capacity of the isomerization and reduction steps in BH.  相似文献   

14.
Conjugated linoleic acid (CLA) is a natural component of meat and dairy products with anticarcinogenic, fat lowering, antiatherogenic and anticatabolic activity in animals. The purpose of this study was to examine the effect of CLA supplementation to humans on body fat, certain biochemical parameters of serum, and the CLA content of serum lipids. Twenty-two volunteers were divided into a study group and a control group in a doubly blind design. The study group received 0.7 g of CLA for four weeks and 1.4 g of CLA for the next four weeks, while the control group received placebo. Diet was controlled and no significant differences in energy or macronutrient intake were found between the two groups. Measurements were taken at baseline, four weeks, and eight weeks. The sum of the thickness of ten skinfolds, percentage body fat calculated from it and fat mass was significantly reduced in the CLA group during the second period (P < 0.004) but not overall during the study. Serum HDL-cholesterol decreased significantly (P < 0.001) and triacylglycerols as well as total cholesterol tended to decrease in the CLA group during the first period. The CLA content of serum non-esterified fatty acids, triacylglycerols, phospholipids, and cholesteryl esters increased gradually with supplementation; the CLA content of total serum lipids doubled at the end of the study compared to baseline. Phospholipids had the highest CLA content regardless of supplementation. These data indicate that supplementation with 0.7-1.4 g CLA daily for 4-8 weeks may modulate body fat and serum lipids, as well as increase the CLA content of serum lipids in humans.  相似文献   

15.
Conjugated linoleic acid (CLA) is a naturally occurring group of dienoic derivaties of linoleic acid found mainly in beef and dairy products. CLA has been reported to reduce body fat, as well as to possess anticarcinogenic, antiatherogenic and procatabolic activities in animals. The objective of this study was to evaluate the effect of CLA supplementation to spontaneously hypertensive rats (SHR) on body fat, biochemical parameters of serum related tumor necrosis factor alpha (TNF-α) and resistin secretion. Thirty rats were divided in three groups, the first group of spontaneously hypertensive rats received a standard diet (V-SHR group, n=10), a second group of SHR was fed 1.5% of conjugated linoleic acid (CLA-SHR group, n=10) and the third was the control, non-hypertensive group (KW, n=10) also on a standard diet including 7.5% of sunflower oil during eight weeks.After CLA diet administration, spontaneously hypertensive rats showed a significant reduction in blood pressure, serum glucose, cholesterol and triacylglycerols, together with reduction of index of body fat, pericardic, abdominal and epididymal adipose tissue. These effects were accompanied by a decrease in the secretion of TNF-α and resistin.  相似文献   

16.
Thirty lactating dairy cows were used in a 3 × 3 Latin-square design to investigate the effects of a raw or extruded blend of linseed and wheat bran (70:30) on plasma and milk fatty-acids (FA). Linseed diets, containing 16.6% linseed blend on a dry-matter basis, decreased milk yield and protein percentage. They decreased the proportions of FA with less than 18 carbons in plasma and milk and resulted in cis-9, cis-12, cis-15 18:3 proportions that were more than three and four times higher in plasma and milk, respectively, whereas cis-9, cis-12 18:2 proportions were decreased by 10-15%. The cis-9, trans-11, cis-15 18:3 isomer of conjugated linolenic acid was not detected in the milk of control cows, but was over 0.15% of total FA in the milk fat of linseed-supplemented cows. Similarly, linseed increased plasma and milk proportions of all biohydrogenation (BH) intermediates in plasma and milk, including the main isomer of conjugated linoleic acid cis-9, trans-11 18:2, except trans-4 18:1 and cis-11, trans-15 18:2 in plasma lipids. In milk fat, compared with raw linseed, extruded linseed further reduced 6:0-16:0 even-chain FA, did not significantly affect the proportions of 18:0, cis-9 18:1 and cis-9, cis-12 18:2, tended to increase cis-9, cis-12, cis-15 18:3, and resulted in an additional increase in the proportions of most BH intermediates. It was concluded that linseed addition can improve the proportion of conjugated linoleic and linolenic acids, and that extrusion further increases the proportions of intermediates of ruminal BH in milk fat.  相似文献   

17.
The effects of conjugated linoleic acid isomers (CLA) and endurance training on lean body mass are expected to result from their action on tissue protein metabolism. The aim of this study was to analyze their effects on protein metabolism in 2 muscles, the small intestine and liver of adult rats. Four-month-old male Wistar rats were fed diets containing either no CLA, cis-9, trans-11 CLA isomer (1 g.100 g(-1)), trans-10, cis-12 CLA isomer (1 g.100 g(-1)) or both isomers (1 g.100 g(-1) each) for 6 weeks. Half of the rats were subjected to endurance training by running on a treadmill. At the end of this period, the rats were injected with a flooding dose of (13)C-valine to determine protein synthesis rates in the post-absorptive (experiment 1) and in the post-prandial (experiment 2) states. No effect of CLA or endurance training were detected in the small intestine. Training reduced food intake and protein synthesis rates in the liver but no effect was found on the protein synthesis rates in muscles. In the post-absorptive state, protein synthesis rate was increased by feeding the trans-10, cis-12 CLA isomer alone in the liver (+9%) or in combination with the cis-9, trans-11 isomer in the gastrocnemius (+30%), mostly in sedentary rats. In the post-prandial state, the cis-9, trans-11 CLA isomer tended to reduce the protein synthesis rate in the gastrocnemius muscle. However, no effect of CLA was found on muscle protein amounts. In conclusion, CLA isomers would have limited but differential effects on tissue protein metabolism in adult rats.  相似文献   

18.

Background

The individual genetic variations, as a response to diet, have recently caught the attention of several researchers. In addition, there is also a trend to assume food containing beneficial substances, or to supplement food with specific compounds. Among these, there is the conjugated linoleic acid (CLA), which has been demonstrated to reduce fat mass and to increase lean mass, even though its mechanism of action is still not known. We investigated the effect of CLA isomers (CLA c9,t11 and CLA t10,c12) on the proteomic profile of liver, adipose tissue, and muscle of mouse, with the aim of verifying the presence of a modification in fat and lean mass, and to explore the mechanism of action.

Methods

C57/BL6 mice were fed for 2 months with different diets: (1) standard chow, (2) CLA c9,t11 diet, (3) CLA t10,c11 diet, (4) CLA isomers mixture diet, and (5) linoleic acid diet. The proteomic profile of liver, white adipose tissue, and muscle was investigated. Statistical significance of the spots with an intensity higher than twofold in expression compared to the control was tested using student’s t test (two-tail).

Results

We found that both isomers modulate the proteomic profiles of liver, adipose tissue, and muscle by different mechanisms of action. Liver steatosis is mostly due to the isomer CLA t10,c12, since it alters the expression of lipogenetic proteins; it acts also reducing the adipose tissue and increasing fatty acid oxidation in muscle. Conversely, CLA c9,t11 has no relevant effects on liver and adipose tissue, but acts mostly on muscle, where it enhances muscular cell differentiation.

Conclusions

Administration of CLA in humans has to be carefully personalized, since even considering the presence of a species-specific effect, adverse effects might occur on long-term supplementation. Here we demonstrated that, in mouse, CLA is effective in reducing fat mass, but it also induces liver steatosis. The increase of lean mass is linked to an induction of cell proliferation, which, on long-term supplementation, might also lead to adverse effects.
  相似文献   

19.
The substrate selectivity of several microbial lipases has been examined in the esterification of the conjugated linoleic acid (CLA) isomers cis-9,trans-11-, cis-9,cis-11-, trans-9,trans-11- and trans-10,cis-12-octadecadienoic acid with n-butanol in n-hexane. Lipases from Candida cylindracea and Mucor miehei had a preference for the cis-9,trans-11-octadecadienoic acid, while Chirazyme L-5, a Candida antarctica lipase A, accepted the trans-9,trans-11-fatty acid with a high selectivity. Moreover, lipase from Candida cylindracea and Chirazyme L-5 catalysed the esterification of the cis-9,trans-11-octadecadienoic acid with n-butanol faster than the corresponding reaction of the trans-10,cis-12-fatty acid.  相似文献   

20.
The supplementation of conjugated linoleic acids (CLA) to the rations of dairy cows represents an opportunity to reduce the content of milk fat. Therefore, CLA have the potential beneficial effect of reducing energy requirements of the early lactating cow. The present study aimed at the examination of long-term and posttreatment effects of dietary CLA intake on performance, variables of energy metabolism-like plasma levels of non esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB), and fatty acid profile in milk fat. Forty-six pregnant German Holstein cows were assigned to one of three dietary treatments: (1) 100 g/ d of control fat supplement (CON), (2) 50 g/d of control fat supplement and 50 g/ d of CLA supplement (CLA-1) and (3) 100 g/d of CLA supplement (CLA-2). The lipid-encapsulated CLA supplement consisted of approximately 10% of trans-10, cis-12 CLA and cis-9, trans-11 CLA each. The experiment started 1 d after calving and continued for about 38 weeks, divided into a supplementation (26 weeks) and a depletion period (12 weeks). Over the first 7 weeks of treatment, 11 and 16% reductions in dry matter intake compared to control were observed for the cows fed CLA-1 and CLA-2 supplements respectively. Consequently, the calculated energy balance for these two CLA groups was lower compared to the control. Plasma levels of NEFA and BHB remained unaffected. Later in lactation the highest CLA supplementation resulted in a reduction of milk fat content of 0.7%. However, no reduction in milk fat yield, and accordingly no milk fat depression (MFD), could be shown. The trans-10, cis-12 CLA in milk fat increased with increasing dietary CLA supplementation in a dose-dependent manner. The proportion of C16 in milk fat was decreased by the highest CLA supplementation. With the exception of an increase in plasma glucose level in the CLA-2 group, no post-treatment effects were observed. Overall, under the conditions of the present study no improvement in the calculated energy balance by CLA supplementation could be shown for the entire evaluation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号