首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水稻粒长QTL定位与主效基因的遗传分析   总被引:1,自引:0,他引:1  
该研究利用短粒普通野生稻矮杆突变体和长粒栽培稻品种KJ01组配杂交组合F_1,构建分离群体F_2;并对该群体粒长进行性状遗传分析,利用平均分布于水稻的12条染色体上的132对多态分子标记对该群体进行QTL定位及主效QTLs遗传分析,为进一步克隆新的主效粒长基因奠定基础,并为水稻粒形育种提供理论依据。结果表明:(1)所构建的水稻杂交组合分离群体F_2的粒长性状为多基因控制的数量性状。(2)对543株F_2分离群体进行QTL连锁分析,构建了控制水稻粒长的连锁遗传图谱,总长为1 713.94 cM,共检测出24个QTLs,只有3个表现为加性遗传效应,其余位点均表现为遗传负效应。(3)检测到的3个主效QTLs分别位于3号染色体的分子标记PSM379~RID24455、RID24455~RM15689和RM571~RM16238之间,且三者对表型的贡献率分别为54.85%、31.02%和7.62%。(4)在标记PSM379~RID24455之间已克隆到的粒长基因为该研究新发现的主效QTL位点。  相似文献   

2.
一份新型水稻极度分蘖突变体的遗传分析及分子标记定位   总被引:1,自引:0,他引:1  
在三系杂交水稻保持系绵香1B(M1B)和一个雄性不育材料GMS-1的杂交后代中发现一株极度分蘖突变体(命名为ext.M1B),其分蘖数为121。对ext-M1B与5个正常分蘖水稻品种杂交F1和F2代的遗传分析表明,ext-M1B的极度分蘖特性受一对隐性核基因控制。以2480B/ext-M1B的F2代作定位群体,用分子标记将ext-M1B的突变基因定位于水稻第6染色体短臂,该基因与微卫星标记RM197、RM584和RM225的遗传距离分别为3.8cM、5.1cM和5.2cM,认为ext-M1B突变基因是一个新的水稻极度分蘖基因,暂命名为ext-M1B(t)。  相似文献   

3.
新的水稻矮秆基因的发掘,对深入研究植物株高的调控途径及株型育种有非常重要的作用。我们报道了从日本特早熟粳稻品种Kitaake的组织培养后代获得的一个矮秆突变体dm,该突变体植株细小,紧凑,机械强度降低,结实率下降,籽粒变窄,千粒重降低等。利用分离群体中的矮秆株,最终将目标基因定位在第4染色体长臂末端InDel标记EL-72和L-1之间,物理距离为168 Kb的区间内,该区间内无已报道的水稻矮秆基因,该基因可能是一个尚未被克隆的新的株高决定基因。  相似文献   

4.
该研究从甲基磺酸乙酯(EMS)诱变的籼稻‘Kasalath’突变体库中筛选到1个根系超短的突变体,命名为ssr1(super short root 1),8d苗龄突变体的主根和不定根长度分别只有野生型的8.89%和2.29%,其不定根发生正常,但侧根的发生和伸长都受到严重抑制,且根毛也非常短。此外,ssr1植株整体矮小,株高不到野生型的一半。遗传分析结果表明,该突变性状由1对隐性核基因控制。利用图位克隆技术将SSR1基因定位在第9染色体的STS(sequence tagged site)分子标记9g7047K和9g7290K之间,物理距离约为243kb,在定位区间共发现39个预测基因,经分析其中没有已克隆的根系发育基因。对SSR1的定位为进一步克隆该基因和阐明水稻根构型的分子机理奠定了基础。  相似文献   

5.
水稻白色中脉Oswm2的遗传分析与分子标记定位   总被引:4,自引:0,他引:4  
胡景涛  张甲  李园园  付崇允  郑静  陈家彬  胡燕  李仕贵 《遗传》2008,30(9):1201-1206
从T-DNA突变体库中获得一份以中花11为遗传背景的白色中脉突变体。该突变体剑叶以下叶片的中下部中脉表现为白色, 白色中脉附近的叶色微黄, 并且伴随株高等农艺性状的改变, 暂时将其定名为Oswm2(Oryza sativa white midrib 2)。遗传分析表明该突变性状受一对隐性单基因控制, 以Oswm2和粳稻02428杂交的F2分离群体作为定位群体, 将OsWM2基因定位在水稻第7染色体的SSR标记RM21478和RM418之间, 遗传距离分别为8.7和15.9 cM。  相似文献   

6.
水稻(Oryza sativa)是我国重要的粮食作物之一。水稻矮秆材料的引入掀起了第1次"绿色革命"。但近年来,在水稻育种中矮生基因遗传单一的问题越来越突出,已经严重影响到水稻产量的持续提高。利用60Co-γ射线辐照籼稻亲本材料M804获得了一个性状能够稳定遗传的矮秆突变体MU101。对该矮秆突变体和台粳16号杂交获得的F2代的遗传分析表明,该矮秆性状受1对隐性单基因控制,并暂命名为ds1。利用已有的SSR分子标记将DS1基因定位在水稻第5号染色体上,通过扩大群体和开发新的Indel标记,进一步将DS1基因定位在2个Indel标记之间,两者间的物理距离大约为384kb。该研究为DS1基因的克隆及其在生产中的应用奠定了基础。  相似文献   

7.
水稻无内稃突变体的遗传分析和基因定位   总被引:4,自引:3,他引:4  
花器官发育异常的突变体是研究植物花发育分子遗传机制的良好实验材料,以水稻无内稃突变体为父本,生47、N625和CDR22为母本配制杂交组合进行性状遗传分析,根据F2代表型及X^2测验结果表明,突变性状是由单隐性基因控制的,选用突变体为父本,生47为母本杂交的F2群体作定位群体,利用SSLP标记的和RFLP标记将与突变性状相关的基因定位在第6染色体短臂上RFLP标记C498和RZ450之间,暂定名为npa-1。为进一步的基因克隆及功能研究奠定了基础。  相似文献   

8.
水稻显性早熟材料D64B的发现、遗传分析和分子标记定位   总被引:3,自引:0,他引:3  
D64B是从籼型杂交稻保持系D63B中发现的一个无色早熟突变株。用不育系、保持系、恢复系以及早稳型水稻品种与之杂交,F1的抽穗期多数与早熟亲本D64B相同或相近,部分偏向早熟亲本。这些结果表明D64B具有显性早熟特性。将D64B在海南陵水短日照和温江长日照下分期种植,观察到两地点因生长发育期间温度变化引起的抽穗期的变化的程度是一致的,并且在一定范围内随着生长发育期间温度升高,D64B抽穗缩短,可知D64B不感光,感温性中等。种植D64B与蜀恢527的正反交F2和回交一代BC1,三者的抽穗期均呈双峰分布,并且峰谷处于同一位置,以峰谷值103d为转折点进行分组,早熟与迟熟植株的分离比经x^2检验分别符合3:1和1:1,表明D64B的早熟特性主要受一对显性早熟核基因控制。用356对微卫星引物对亲本D64B和蜀恢527进行多态性分析,并用多态性引物扩增蜀恢527/D64B的F2早熟和迟熟近等基因池,找到多态引物RM279,进一步用RM279附近的微卫星引物扩增F2早熟和迟熟近等基因池、迟熟植株,筛到多态性引物RM71。用MAPMAKER/EXP3.0软件分析,将该早熟基因定位于第2染色体的短臂端,位于RM179和RM71之间,遗传距离分别为12.6cM和13.3cM,该基因拟名EF-3(t)。在育种实践中用D64B育成早熟不育系D64A。  相似文献   

9.
水稻根系对其生长、发育及产量等起着至关重要的作用。该研究从甲基磺酸乙酯(ethyl methane sulfonate,EMS)诱变的籼稻Kasalath突变体库中筛选到1个根系变短的突变体,命名为Osksr5(Oryza sativa kasalath short root 5),该突变体植株具体表现为主根、不定根和侧根都明显变短,不定根的数目相对减少,株高与野生型相比也明显矮小。遗传分析结果表明,该突变性状由1对隐性核基因控制。利用图位克隆技术将OsKSR5基因定位在第1染色体的STS(sequence tagged site)分子标记33027k和33471k,物理距离约为444 kb。对OsKSR5基因的定位为进一步克隆该基因和阐明水稻根系发育的分子机理奠定了基础。  相似文献   

10.
该研究对从甲基磺酸乙酯(EMS)诱变的水稻突变体库中筛选到的一个短根突变体Osksr6(Oryza sativa kasalath short root 6)进行了表型鉴定、遗传分析与基因定位。结果表明:(1)生长7d的突变体Osksr6与野生型相比,株高与不定根数量差异不明显,但主根变短61.98%、不定根变短46.42%,侧根的发生与根毛的伸长也受不同程度抑制;成熟期的Osksr6分蘖数明显减少,总穗长与结实率均较野生型差。(2)遗传分析结果显示,突变体Osksr6的短根性状受1对隐性基因控制。(3)利用图位克隆技术,将突变基因OsKSR6定位于3号染色体InDel标记28420k和28880k之间,物理距离约460kb,该区间没有已报道的与根系发育相关的基因。该研究为进一步研究水稻根系生长的分子机理奠定了基础。  相似文献   

11.
水稻生长发育多效基因DDF1的遗传分析与基因定位   总被引:1,自引:0,他引:1  
Li SP  Duan YL  Chen ZW  Guan HZ  Wang CL  Zheng LL  Zhou YC  Wu WR 《遗传》2011,33(12):1374-1379
植物中存在许多多效性基因,它们在调控植物的营养生长与生殖发育过程中起着关键性作用。文章在籼稻育种材料中发现了一个植株显著矮化且花器官明显变异的突变体ddf1(dwarf and deformed flower 1)。遗传分析表明,该突变体由单基因隐性突变所致,这说明该基因是一个同时控制营养生长和生殖发育的多效性基因,暂命名为DDF1。为了定位该基因,将ddf1杂合体与热带粳稻品种DZ60杂交,建立了F2定位群体,利用水稻RM系列微卫星标记,通过混合分离分析(BSA)和小群体连锁分析,将DDF1初步定位在水稻第6号染色体RM588和RM587标记之间,与两标记的遗传距离分别为3.8 cM和2.4 cM。进一步利用已经公布的水稻基因组序列,在初步定位的区间内开发新的SSR标记,将DDF1定位在165 kb的区间内。该结果为克隆DDF1奠定了基础。  相似文献   

12.
水稻紫色柱头的遗传分析与基因定位   总被引:5,自引:0,他引:5  
rdh是四川农业大学水稻研究所通过组织培养和连续自交得到的一个具有红色籽粒和紫色柱头,遗传上稳定的籼稻材料。抽穗期在rdh与3个无色柱头品种蜀恢527、蜀恢368和蜀恢168之间分别做正反交,结果显示F1群体在柱头颜色上正反交之间没有明显区别,全部是紫色的。F2群体发生分离成为两组,一组具有紫色柱头,另一组具有无色柱头。每一个F2群体的紫色柱头对无色柱头均适合3:1的比例,表明rdh紫色柱头性状的遗传是由一对显性核基因控制的。组合rdh/蜀恢527 F2分离群体中40个具有紫色柱头的显性单株和284个具有无色柱头的隐性单株构成定位群体。从两个亲本rdh和蜀恢527提取的基因组DNA,用涵盖水稻整个基因组的252对微卫星标记作引物扩增片段。结果发现有78对微卫星标记在两亲本之间具有多态性。然后用这78对标记作引物,扩增亲本、F1、F2显性单株和F2隐性单株、,结果显示位于水稻第6染色体的RM276、RM253以及RM111与rdh紫色柱头基因有连锁关系。再用RM276、RM253以及RM111作引物扩增剩余的全部具有无色柱头的隐性单株。结果表明:在RM276的扩增产物中,有20个单交换和2个双交换;在RM253中有2个单交换:在RM111中有3个单交换。因此,rdh紫色柱头基因被定位于水稻第6染色体。根据公式P=(h+2b)/2n,计算得到微卫星标记RM276,RM253和RM111与rdh紫色柱头基因的遗传距离分别是4.2cM、0.35cM以及0.53cM。根据已经发表的RM276、RM253和RM111在第6染色体上的位置以及计算得到的rdh与RM276、RM253和RM111之间的遗传距离,构建了部分连锁图谱,并暂时将这个紫色柱头基因命名为Ps-4。  相似文献   

13.
Li WC  Wang YF  Ma SM  Guo SW 《遗传》2010,32(10):1065-1070
在水稻品种新稻18中发现了一个多分蘖植株,经过多代自交获得了稳定的多分蘖突变株,突变体ht1在整个生育期最显著的特点就是分蘖数目多,是其野生型新稻18的3倍以上.遗传分析表明该基因受1对显性核基因控制,命名为HT1.利用微卫星标记将HT1初步定位于第10号染色体RM25435和RM25552之间,进一步利用极端个体定位法把HT1精细定位于标记RM25523和RM25532之间,HT1基因距它们的遗传距离均为0.05 cM,这两标记问的物理距离约为130kb.  相似文献   

14.
从粳稻品种‘日本晴’经~(60)Co诱变的M_2代材料中发现一个半矮化并且花发育异常突变体sd-df3,其表现为植株半矮化,分蘖增加,半包茎穗,雄蕊发育不良,无花粉。遗传分析显示,该突变体表型受1对隐性核基因控制。以杂合型突变体为母本,与广亲和品种Dular杂交,构建F_2分离群体,将该基因定位在水稻第3号染色体,In/Del标记333591与333818之间的物理距离约为227kb的范围,目前该范围内没有矮化相关基因报道。  相似文献   

15.
水稻抗性基因定位及相关分子标记研究进展   总被引:18,自引:0,他引:18  
水稻是一种重要的粮食作物。而选育高抗性良种是有效防治病虫的危害,增加水稻单位面积产量的一项关键措施。了解水稻本身抗性的遗传信息是进行抗性育种的基础。现代生物技术的发展为抗性育种提供了新途径。本文较系统地概述了水稻对稻瘟病、白叶枯病、稻飞虱、稻叶暗抗性基因定位及相关分子标记研究的最新发展,为利用分子标记进行了水稻抗性育种及抗性基因克隆提供参考文献。  相似文献   

16.
从水稻(Oryza sativa L.)的两个半矮秆籼稻品种6442S-7和蜀恢881杂交F2代群体中发现一个高秆突变体D111,其株高和秆长分别比亲本蜀恢881增加63.0%和87.0%.用205个微卫星标记分析D¨1及其原始亲本6442S-7和蜀恢881之间的基因组DNA多态性,结果未发现D111具有2个原始亲本都没有的新带型,证明D1¨的确是6442S-7和蜀恢881的杂交后代发生基因突变产生的.将D111分别与蜀恢881、蜀恢527、明恢63、9311、IR68、G46B等6个半矮秆品种和高秆对照品种南京6号杂交,分析F1和F2代株高的遗传行为,结果表明D1¨的高秆性状由一对显性基因控制,且该基因与南京6号的高秆基因紧密连锁或等位.以蜀恢527/D111 F2群体为定位群体,运用微卫星标记将D111显性高秆突变基因定位于水稻第一染色体长臂,与RM212、RM302和RM472的遗传距离分别是27.7 cM、25.5 cM和6.0 cM,该基因暂命名为LC(t).认为D111是首例从半矮秆品种自然突变产生的水稻显性高秆突变体,LC(t)为首次定位的水稻显性高秆突变基因.此外,将上述基因定位结果与Causse等(1994)和Temnykh等(2000,2001)发表的水稻分子连锁图谱进行比较,发现LC(t)基因恰巧位于与水稻"绿色革命基因"sd1相同或十分相近的染色体区域,因此,还就LC(t)基因与sd1基因之间的可能关系进行了讨论.  相似文献   

17.
一个水稻显性高秆突变体的遗传分析和基因定位   总被引:6,自引:0,他引:6  
从水稻(Oryza sativa L.)的两个半矮秆籼稻品种6442S-7和蜀恢881杂交F2代群体中发现一个高秆突变体D111,其株高和秆长分别比亲本蜀恢881增加63.0%和87.0%。用205个微卫星标记分析D111及其原始亲本6442S-7和蜀恢881之间的基因组DNA多态性,结果未发现D111具有2个原始亲本都没有的新带型,证明D111的确是6442S-7和蜀恢881的杂交后代发生基因突变产生的。将D111分别与蜀恢881、蜀恢527、明恢63、9311、IR68、G46B等6个半矮秆品种和高秆对照品种南京6号杂交,分析F1和F2代株高的遗传行为,结果表明D111的高秆性状由一对显性基因控制,且该基因与南京6号的高秆基因紧密连锁或等位。以蜀恢527/D111 F2群体为定位群体,运用微卫星标记将D111显性高秆突变基因定位于水稻第一染色体长臂,与RM212、RM302和RM472的遗传距离分别是27.7 cM、25.5 cM和6.0 cM,该基因暂命名为LC(t)。认为D111是首例从半矮秆品种自然突变产生的水稻显性高秆突变体,LC(t)为首次定位的水稻显性高秆突变基因。此外,将上述基因定位结果与Causse等(1994)和Temnykh等(2000; 2001)发表的水稻分子连锁图谱进行比较,发现LC(t)基因恰巧位于与水稻“绿色革命基因”sd1相同或十分相近的染色体区域,因此,还就LC(t)基因与sd1基因之间的可能关系进行了讨论。  相似文献   

18.
一个新的水稻迟熟性基因的遗传分析和分子标记定位   总被引:8,自引:1,他引:8  
中籼迟熟水稻品系8987含未知的长生育期基因,在杂交水稻育种中有重要的利用价值,应用该品系与4个不同生态类型的水稻品种杂交,对其F1和F2群体进行生育期调查和遗传分析,确认8987的长生育期受1对隐性主效基因控制。以(8987X地谷)F2群体为基础,应用RFLP和微卫星标记结合群分法,发现第7染色体的RFLP标记C213与该基因连锁;进一步应用F2分离群体将该基因定位于第7染色体上,暂定名为lf-3。此基因的发现和定位将有助于分子标记辅助选择和杂交水稻的改良。  相似文献   

19.
利用化学诱变剂甲基磺酸乙酯(EMS)处理籼稻品种冈46B获得雄性不育突变体D63,并对该突变体进行表型鉴定、遗传分析和基因定位。结果显示D63突变体花药瘦小呈乳白色,花药内完全无花粉粒,属于无花粉型雄性不育。与野生型亲本冈46B相比,D63突变体成熟期株高降低了13.7%,穗伸出度减少了266.7%,自交结实率为0,其他农艺性状无显著差异。遗传分析表明该不育性状受1对隐性核基因控制,该突变基因定位于第2号染色体长臂靠近着丝粒区域In Del标记J2和J4之间,与J2和J4的遗传距离分别为0.2 c M和0.1 c M,该定位区间的物理距离为105.8 kb。候选基因分析结果表明,D63突变体在编码分泌性成束糖蛋白基因LOC_Os02g28970编码区第1580位碱基A突变为C,使编码蛋白的氨基酸序列第527位组氨酸(His)突变为脯氨酸(Pro)。D63突变体与已报道的mtr1突变体表型上不同之处主要是后者花药含有败育花粉粒,二者表型上的差异可能是由于LOC_Os02g28970基因序列突变位点不同,以及它们分别属于籼、粳亚种2个不同遗传背景所致。  相似文献   

20.
水稻的粒长是水稻粒型构成的因素之一,直接影响水稻的单产,而粒长又是稻米品质的重要指标之一。该研究利用选育含有稻瘟病抗性基因Pigm 1的长粒恢复系R20 4为研究材料,通过图位克隆的方法,对粒长基因进行鉴定,并对该长粒性状在育种中的应用进行了分析。结果显示:(1)该长粒为显性基因控制的性状。(2)将粒长基因GL12 1初步定位在水稻第12染色体上Indel 12 3和Indel 12 7之间,物理距离约4.5 Mb。(3)通过进一步开发标记,最终将该粒长基因GL12 1定位在标记Indel 10和Indel 16之间,物理距离约900 kb。(4)长粒恢复系R20 4与‘庆源A’、‘定源A’和‘启源A’测交组合的粒长均表现R20 4表型,而与‘靓香A’测交组合的粒长比R20 4更长。研究表明,粒长基因GL12 1为显性基因控制的性状,可能为一个新的粒长控制基因,该研究为后期GL12 1基因的克隆、功能研究以及粒型分子育种奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号