首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2) and has been shown to exhibit a variety of cannabimimetic activities in vitro and in vivo. Recently, we proposed that 2-arachidonoylglycerol is the true endogenous ligand for the cannabinoid receptors, and both receptors (CB1 and CB2) are primarily 2-arachidonoylglycerol receptors. The CB1 receptor is assumed to be involved in the attenuation of neurotransmission. On the other hand, the physiological roles of the CB2 receptor, which is abundantly expressed in several types of leukocytes such as macrophages, still remain unknown. In this study, we examined the effects of 2-arachidonoylglycerol on the motility of HL-60 cells differentiated into macrophage-like cells. We found that 2-arachidonoylglycerol induces the migration of differentiated HL-60 cells. The migration induced by 2-arachidonoylglycerol was blocked by treatment of the cells with either SR144528, a CB2 receptor antagonist, or pertussis toxin, suggesting that the CB2 receptor and Gi/Go are involved in the 2-arachidonoylglycerol-induced migration. Several intracellular signaling molecules such as Rho kinase and mitogen-activated protein kinases were also suggested to be involved. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, failed to induce the migration. The 2-arachidonoylglycerol-induced migration was also observed for two other types of macrophage-like cells, the U937 cells and THP-1 cells, as well as human peripheral blood monocytes. These results strongly suggest that 2-arachidonoylglycerol induces the migration of several types of leukocytes such as macrophages/monocytes through a CB2 receptor-dependent mechanism thereby stimulating inflammatory reactions and immune responses.  相似文献   

2.
We examined the effect of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, on the intracellular free Ca(2+) concentrations in HL-60 cells that express the cannabinoid CB2 receptor. We found that 2-arachidonoylglycerol induces a rapid transient increase in intracellular free Ca(2+) concentrations in HL-60 cells. The response was affected by neither cyclooxygenase inhibitors nor lipoxygenase inhibitors, suggesting that arachidonic acid metabolites are not involved. Consistent with this notion, free arachidonic acid was devoid of any agonistic activity. Importantly, the Ca(2+) transient induced by 2-arachidonoylglycerol was blocked by pretreatment of the cells with SR144528, a CB2 receptor-specific antagonist, but not with SR141716A, a CB1 receptor-specific antagonist, indicating the involvement of the CB2 receptor but not the CB1 receptor in this cellular response. G(i) or G(o) is also assumed to be involved, because pertussis toxin treatment of the cells abolished the response. We further examined the structure-activity relationship. We found that 2-arachidonoylglycerol is the most potent compound among a number of naturally occurring cannabimimetic molecules. Interestingly, anandamide and N-palmitoylethanolamine, other putative endogenous ligands, were found to be a weak partial agonist and an inactive ligand, respectively. These results strongly suggest that the CB2 receptor is originally a 2-arachidonoylglycerol receptor, and 2-arachidonoylglycerol is the intrinsic natural ligand for the CB2 receptor that is abundant in the immune system.  相似文献   

3.
2-Arachidonoylglycerol (2-AG (1)) is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). There is growing evidence that 2-arachidonoylglycerol plays important physiological and pathophysiological roles in various mammalian tissues and cells, though the details remain to be clarified. In this study, we synthesized several remarkable analogs of 2-arachidonoylglycerol, closely related in chemical structure to 2-arachidonoylglycerol: an analog containing an isomer of arachidonic acid with migrated olefins (2-AGA118 (3)), an analog containing a one-carbon shortened fatty acyl moiety (2-AGA113 (4)), an analog containing an one-carbon elongated fatty acyl moiety (2-AGA114 (5)), a hydroxy group-containing analog (2-AGA105 (6)), a ketone group-containing analog (2-AGA109 (7)), and a methylene-linked analog (2-AGA104 (8)). We evaluated their biological activities as cannabinoid receptor agonists using NG108-15 cells which express the CB1 receptor and HL-60 cells which express the CB2 receptor. Notably, these structural analogs of 2-arachidonoylglycerol exhibited only weak agonistic activities toward either the CB1 receptor or the CB2 receptor, which is in good contrast to 2-arachidonoylglycerol which acted as a full agonist at these cannabinoid receptors. These results clearly indicate that the structure of 2-arachidonoylglycerol is strictly recognized by the cannabinoid receptors (CB1 and CB2) and provide further evidence that the cannabinoid receptors are primarily the intrinsic receptors for 2-arachidonoylglycerol.  相似文献   

4.
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors. Two types of cannabinoid receptors have been identified to date. The CB1 receptor is abundantly expressed in the brain, and assumed to be involved in the attenuation of neurotransmission. On the other hand, the physiological roles of the CB2 receptor, mainly expressed in several types of inflammatory cells and immunocompetent cells, have not yet been fully elucidated. In this study, we investigated possible pathophysiological roles of the CB2 receptor and 2-arachidonoylglycerol in acute inflammation in mouse ear induced by the topical application of 12-O-tetradecanoylphorbol-13-acetate. We found that the amount of 2-arachidonoylglycerol was markedly augmented in inflamed mouse ear. In contrast, the amount of anandamide, another endogenous cannabinoid receptor ligand, did not change markedly. Importantly, 12-O-tetradecanoylphorbol-13-acetate-induced ear swelling was blocked by treatment with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the swelling. On the other hand, the application of AM251, a CB1 receptor antagonist, exerted only a weak suppressive effect. The application of SR144528 also reduced the 12-O-tetradecanoylphorbol-13-acetate-induced production of leukotriene B(4) and the infiltration of neutrophils in the mouse ear. Interestingly, the application of 2-arachidonoylglycerol to the mouse ear evoked swelling, which was abolished by treatment with SR144528. Nitric oxide was suggested to be involved in the ear swelling induced by 2-arachidonoylglycerol. These results suggest that the CB2 receptor and 2-arachidonoylglycerol play crucial stimulative roles during the course of inflammatory reactions.  相似文献   

5.
Cannabinoid receptors and their endogenous ligands   总被引:1,自引:0,他引:1  
Delta9-Tetrahydrocannabinol, a major psychoactive component of marijuana, has been shown to interact with specific cannabinoid receptors, thereby eliciting a variety of pharmacological responses in experimental animals and human. In 1990, the gene encoding a cannabinoid receptor (CB1) was cloned. This prompted the search for endogenous ligands. In 1992, N-arachidonoylethanolamine (anandamide) was isolated from pig brain as an endogenous ligand, and in 1995, 2-arachidonoylglycerol was isolated from rat brain and canine gut as another endogenous ligand. Both anandamide and 2-arachidonoylglycerol exhibit various cannabimimetic activities. The results of structure-activity relationship experiments, however, revealed that 2-arachidonoylglycerol, but not anandamide, is the intrinsic natural ligand for the cannabinoid receptor. 2-Arachidonoylglycerol is a degradation product of inositol phospholipids that links the function of cannabinoid receptors with the enhanced inositol phospholipid turnover in stimulated tissues and cells. The possible physiological roles of cannabinoid receptors and 2-arachidonoylglycerol in various mammalian tissues such as those of the nervous system are discussed.  相似文献   

6.
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays important physiological roles in several mammalian tissues and cells, yet the details remain ambiguous. In this study, we first examined the effects of 2-arachidonoylglycerol on the motility of human natural killer cells. We found that 2-arachidonoylglycerol induces the migration of KHYG-1 cells (a natural killer leukemia cell line) and human peripheral blood natural killer cells. The migration of natural killer cells induced by 2-arachidonoylglycerol was abolished by treating the cells with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the 2-arachidonoylglycerol-induced migration. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, did not induce the migration. Delta9-tetrahydrocannabinol, a major psychoactive constituent of marijuana, also failed to induce the migration; instead, the addition of delta9-tetrahydrocannabinol together with 2-arachidonoylglycerol abolished the migration induced by 2-arachidonoylglycerol. It is conceivable that the endogenous ligand for the cannabinoid receptor, that is, 2-arachidonoylglycerol, affects natural killer cell functions such as migration, thereby contributing to the host-defense mechanism against infectious viruses and tumor cells.  相似文献   

7.
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.  相似文献   

8.
Anandamide (N-arachidonoylethanolamine) has been identified as an endogenous ligand of the G-protein coupled cannabinoid CB(1) receptor. Recent studies have postulated the existence of carrier-mediated anandamide transport which is involved in the termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellulary, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-arachidonoylglycerol (2-AG). Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors, the anandamide transporter and FAAH are currently emerging in the literature. This review considers the divergences between these SARs and focuses upon the conformational implications for endocannabinoid recognition at each of these biological targets.  相似文献   

9.
2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated from rat brain and canine gut as an endogenous cannabinoid receptor ligand (Sugiura, T., Kondo, S., Sukagawa, A., Nakane, S., Shinoda, A., Itoh, K., Yamashita, A., Waku, K., 1995. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89-97; Mechoulam, R., Ben-Shabat, S., Hanus, L., Ligumsky, M., Kaminski, N. E., Schatz, A.R., Gopher, A., Almog, S., Martin, B.R., Compton, D.R., Pertwee, R.G., Giffin, G., Bayewitch, M., Brag, J., Vogel, Z., 1995. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83-90). 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. Recently, we found that 2-AG induces Ca(2+) transients in NG108-15 cells, which express the CB1 receptor, and in HL-60 cells, which express the CB2 receptor, through a cannabinoid receptor- and Gi/Go-dependent mechanism. Based on the results of structure-activity relationship experiments, we concluded that 2-AG but not anandamide is the natural ligand for both the CB1 and the CB2 receptors and both receptors are primarily 2-AG receptors. Evidences are gradually accumulating that 2-AG is a physiologically essential molecule, although further detailed studies appear to be necessary to determine relative importance of 2-AG and anandamide in various animal tissues. In this review, we described mainly our previous and current experimental results, as well as those of others, concerning the tissue levels, bioactions and metabolism of 2-AG.  相似文献   

10.
2-Arachidonoylglycerol (2-AG), an endogenous cannabinoid receptor ligand, was shown to induce rapid phosphorylation of p42/44 mitogen-activated protein kinase (MAP kinase) in HL-60 cells. We confirmed that the enzyme activity of p42/44 MAP kinase in HL-60 cells was augmented markedly when the cells were stimulated with 2-AG. The addition of SR144528, a cannabinoid CB2 receptor-specific antagonist, to the cells prior to the addition of 2-AG abolished the response induced by 2-AG, indicating that the CB2 receptor is involved in the response. G protein G(i) or G(o) is also assumed to be involved, because pertussis toxin treatment of the cells nullified the response induced by 2-AG. CP55940 and anandamide also induced the activation of p42/44 MAP kinase, although the activation by anandamide was less pronounced than that by 2-AG or CP55940. These results suggest that 2-AG may play an important physiological role in this type of cell through the activation of the p42/44 MAP kinase cascade.  相似文献   

11.
2-Arachidonoylglycerol (2-AG) is a unique molecular species of monoacylglycerol isolated in 1995 from rat brain and canine gut as an endogenous ligand for the cannabinoid receptors. 2-AG is rapidly formed from arachidonic acid-containing phospholipids through increased phospholipid metabolism, such as enhanced inositol phospholipid turnover, in various tissues and cells upon stimulation. 2-AG binds to the cannabinoid receptors (CB1 and CB2) and exhibits a variety of cannabimimetic activities in vitro and in vivo. Notably, anandamide, another endogenous ligand for the cannabinoid receptors, often acts as a partial agonist at these cannabinoid receptors, whereas 2-AG acts as a full agonist in most cases. The results of structure-activity relationship studies suggested that 2-AG rather than anandamide is the true natural ligand for both the CB1 and the CB2 receptors. Evidence is gradually accumulating which shows that 2-AG plays physiologically essential roles in diverse biological systems. For example, several lines of evidence indicate that 2-AG plays an important role as a retrograde messenger molecule in the regulation of synaptic transmission. 2-AG has also been shown to be involved in the regulation of various types of inflammatory reactions and immune responses. In this review, we focused on 2-AG, and summarized information concerning its biosynthesis, metabolism, bioactions and physiological significance, including our latest experimental results.  相似文献   

12.
Recently, we have shown that treatment of rat C6 glioma cells with the raft disruptor methyl-beta-cyclodextrin (MCD) doubles the binding of anandamide (AEA) to type-1 cannabinoid receptors (CB1R), followed by CB1R-dependent signaling via adenylate cyclase and p42/p44 MAPK activity. In the present study, we investigated whether type-2 cannabinoid receptors (CB2R), widely expressed in immune cells, also are modulated by MCD. We show that treatment of human DAUDI leukemia cells with MCD does not affect AEA binding to CB2R, and that receptor activation triggers similar [35S]guanosine-5'-O-(3-thiotriphosphate) binding in MCD-treated and control cells, similar adenylate cyclase and MAPK activity, and similar MAPK-dependent protection against apoptosis. The other AEA-binding receptor transient receptor potential channel vanilloid receptor subunit 1, the AEA synthetase N-acyl-phosphatidylethanolamine-phospholipase D, and the AEA hydrolase fatty acid amide hydrolase were not affected by MCD, whereas the AEA membrane transporter was inhibited (approximately 55%) compared with controls. Furthermore, neither diacylglycerol lipase nor monoacylglycerol lipase, which respectively synthesize and degrade 2-arachidonoylglycerol, were affected by MCD in DAUDI or C6 cells, whereas the transport of 2-arachidonoylglycerol was reduced to approximately 50%. Instead, membrane cholesterol enrichment almost doubled the uptake of AEA and 2-arachidonoylglycerol in both cell types. Finally, transfection experiments with human U937 immune cells, and the use of primary cells expressing CB1R or CB2R, ruled out that the cellular environment could account per se for the different modulation of CB receptor subtypes by MCD. In conclusion, the present data demonstrate that lipid rafts control CB1R, but not CB2R, and endocannabinoid transport in immune and neuronal cells.  相似文献   

13.
Alkylamides (alkamides) from Echinacea modulate tumor necrosis factor alpha mRNA expression in human monocytes/macrophages via the cannabinoid type 2 (CB2) receptor (Gertsch, J., Schoop, R., Kuenzle, U., and Suter, A. (2004) FEBS Lett. 577, 563-569). Here we show that the alkylamides dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide (A1) and dodeca-2E,4E-dienoic acid isobutylamide (A2) bind to the CB2 receptor more strongly than the endogenous cannabinoids. The Ki values of A1 and A2 (CB2 approximately 60 nM; CB1 >1500 nM) were determined by displacement of the synthetic high affinity cannabinoid ligand [3H]CP-55,940. Molecular modeling suggests that alkylamides bind in the solvent-accessible cavity in CB2, directed by H-bonding and pi-pi interactions. In a screen with 49 other pharmacologically relevant receptors, it could be shown that A1 and A2 specifically bind to CB2 and CB1. A1 and A2 elevated total intracellular Ca2+ in CB2-positive but not in CB2-negative promyelocytic HL60 cells, an effect that was inhibited by the CB2 antagonist SR144528. At 50 nM, A1, A2, and the endogenous cannabinoid anandamide (CB2 Ki >200 nM) up-regulated constitutive interleukin (IL)-6 expression in human whole blood in a seemingly CB2-dependent manner. A1, A2, anandamide, the CB2 antagonist SR144528 (Ki <10 nM), and also the non-CB2-binding alkylamide undeca-2E-ene,8,10-diynoic acid isobutylamide all significantly inhibited lipopolysaccharide-induced tumor necrosis factor alpha, IL-1beta, and IL-12p70 expression (5-500 nM) in a CB2-independent manner. Alkylamides and anandamide also showed weak differential effects on anti-CD3-versus anti-CD28-stimulated cytokine expression in human whole blood. Overall, alkylamides, anandamide, and SR144528 potently inhibited lipopolysaccharide-induced inflammation in human whole blood and exerted modulatory effects on cytokine expression, but these effects are not exclusively related to CB2 binding.  相似文献   

14.
2-arachidonoylglycerol (2-AG) is an endogenous ligand for the cannabinoid receptors with a variety of potent biological activities. In this study, we first examined the effects of potassium-induced depolarization on the level of 2-AG in rat brain synaptosomes. We found that a significant amount of 2-AG was generated in the synaptosomes following depolarization. Notably, depolarization did not affect the levels of other molecular species of monoacylglycerols. Furthermore, the level of anandamide was very low and did not change markedly following depolarization. It thus appeared that the depolarization-induced accelerated generation is a unique feature of 2-AG. We obtained evidence that phospholipase C is involved in the generation of 2-AG in depolarized synaptosomes: U73122, a phospholipase C inhibitor, markedly reduced the depolarization-induced generation of 2-AG, and the level of diacylglycerol was rapidly elevated following depolarization. A significant amount of 2-AG was released from synaptosomes upon depolarization. Interestingly, treatment of the synaptosomes with SR141716A, a CB1 receptor antagonist, augmented the release of glutamate from depolarized synaptosomes. These results strongly suggest that the endogenous ligand for the cannabinoid receptors, i.e. 2-AG, generated through increased phospholipid metabolism upon depolarization, plays an important role in attenuating glutamate release from the synaptic terminals by acting on the CB1 receptor.  相似文献   

15.
N -arachidonoylethanolamine (anandamide) was the first endogenous cannabinoid receptor ligand to be discovered. Dual synthetic pathways for anandamide have been proposed. One is the formation from free arachidonic acid and ethanolamine, and the other is the formation from N -arachidonoyl phosphatidylethanolamine (PE) through the action of a phosphodiesterase. These pathways, however, do not appear to be able to generate a large amount of anandamide, at least under physiological conditions. The generation of anandamide from free arachidonic acid and ethanolamine is catalyzed by a degrading enzyme anandamide amidohydrolase/fatty acid amide hydrolase operating in reverse and requires large amounts of substrates. As for the second pathway, arachidonic acids esterified at the 1-position of glycerophospholipids, which are mostly esterified at the 2-position, are utilized for the formation of N -arachidonoyl PE, a stored precursor form of anandamide. In fact, the actual levels of anandamide in various tissues are generally low except in a few cases. 2-Arachidonoylglycerol (2-AG) was the second endogenous cannabinoid receptor ligand to be discovered. 2-AG is a degradation product of arachidonic acid-containing glycerophospholipids such as inositol phospholipids. Several investigators have demonstrated that 2-AG is produced in a variety of tissues and cells upon stimulation. 2-AG acts as a full agonist at the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating and indicates that 2-AG is the most efficacious endogenous natural ligand for the cannabinoid receptors.In this review, we summarize the tissue levels, biosynthesis, degradation and possible physiological significance of two endogenous cannabimimetic molecules, anandamide and 2-AG.  相似文献   

16.
Cardiovascular pharmacology of anandamide   总被引:6,自引:0,他引:6  
The fatty acid amide anandamide produces hypotension and a decrease in systemic vascular resistance in vivo. A drop in blood pressure is also seen with synthetic cannabinoid (CB) receptor agonists. The hypotensive responses to anandamide and synthetic cannabinoids are absent in CB1 receptor gene knockout mice. In isolated arteries and perfused vascular beds, anandamide induces vasodilator responses, which cannot be mimicked by synthetic cannabinoids. Instead, vanilloid receptors on perivascular sensory nerves play a key role in these effects of anandamide. Activation of vanilloid receptors by anandamide triggers the release of sensory neuropeptides such as the vasodilator calcitonin gene-related peptide (CGRP). Anandamide is detected in blood and in many cells of the cardiovascular system, and macrophage-derived anandamide may be involved in several hypotensive clinical conditions. Interestingly, cannabinoid and vanilloid receptors display an overlap in ligand recognition properties, and the frequently used CB1 receptor antagonist SR141716A also inhibits vanilloid receptor-mediated responses. The presence of anandamide in endothelial cells, neurones and activated macrophages (monocytes), and its ability to activate CB and vanilloid receptors make this lipid a potential bioregulator in the cardiovascular system.  相似文献   

17.
The presence of CB(2) receptors was reported in the rat basophilic cell line RBL-2H3 and N-palmitoylethanolamide was proposed as an endogenous, potent agonist of this receptor. We synthesized a series of 10 N-palmitoylethanolamide homologues and analogues, varying by the elongation of the fatty acid chain from caproyl to stearoyl and by the nature of the amide substituent, respectively, and evaluated the affinity of these compounds to cannabinoid receptors in the rat spleen, RBL-2H3 cells and CHO-CB(1) and CHO-CB(2) receptor-transfected cells. In rat spleen slices, CB(2) receptors were the predominant form of the cannabinoid receptors. No binding of [(3)H]SR141716A was observed. [(3)H]CP-55,940 binding was displaced by WIN 55,212-2 and anandamide. No displacement of [(3)H]CP-55,940 or [(3)H]WIN 55,212-2 by palmitoylethanolamide derivatives was observed in rat spleen slices. In RBL-2H3 cells, no binding of [(3)H]CP-55,940 or [(3)H]WIN 55,212-2 could be observed and conversely, no inhibitory activity of N-palmitoylethanolamide derivatives and analogues was measurable. These compounds do not recognize the human CB(1) and CB(2) receptors expressed in CHO cells. In conclusion, N-palmitoylethanolamide was, in our preparations, a weak ligand while its synthesized homologues or analogues were essentially inactive. Therefore, it seems unlikely that N-palmitoylethanolamide is an endogenous agonist of the CB(2) receptors but it may be a compound with potential therapeutic applications since it may act via other mechanisms than cannabinoid CB(1)-CB(2) receptor interactions.  相似文献   

18.
Anandamide (arachidonylethanolamide) and 2-arachidonoylglycerol mediate many of their actions via either CB(1) or CB(2) cannabinoid receptor subtypes. These agonist-receptor interactions result in activation of G proteins, particularly those of the G(i/o) family. Signal transduction pathways that are regulated by these G proteins include inhibition of adenylyl cyclase, regulation of ion currents (inhibition of voltage-gated L, N and P/Q Ca(2+)-currents; activation of K(+) currents); activation of focal adhesion kinase (FAK), mitogen activated protein kinase (MAPK) and induction of immediate early genes; and stimulation of nitric oxide synthase (NOS). Other effects of anandamide and/or 2-arachidonoylglycerol that are not mediated via cannabinoid receptors include inhibition of L-type Ca(2+) channels, stimulation of VR(1) vanilloid receptors, transient changes in intracellular Ca(2+), and disruption of gap junction function. Cardiovascular regulation by anandamide appears to occur by a variety of receptor-mediated and non-receptor-mediated mechanisms. This review will describe and evaluate each of these signal transduction pathways and mechanisms.  相似文献   

19.
The classical cannabinoid receptors CB1 and CB2 as well as the cannabinoid-sensitive receptor GPR55 are widely distributed throughout the mammalian body. In the cardiovascular field, CB1 and CB2 crucially impact on diseases characterized by inflammatory processes, such as atherosclerosis and acute myocardial infarction. Both receptors and their endogenous ligands anandamide and 2-arachidonoylglycerol are up-regulated in the ischaemic heart in humans and animal models. Pharmacological and genetic interventions with CB1 and CB2 vitally affect acute ischaemia-induced cardiac inflammation. Herein, CB1 rather aggravates the inflammatory response whereas CB2 mitigates inflammation via directly affecting immune cell attraction, macrophage polarization and lymphocyte clusters in the pericardial adipose tissue. Furthermore, cannabinoids and their receptors affect numerous cardiac risk factors. In this context, cannabis consumption is debated to trigger arrhythmias and even myocardial infarction. Moreover, CB1 activation is linked to impaired lipid and glucose metabolism and therefore obesity and diabetes, while its antagonism leads to the reduction of plasma triglycerides, low-density lipoprotein cholesterol, leptin, insulin and glucose. On the other hand, activation of cannabinoid-sensitive receptors can also counteract unfavourable predictors for cardiovascular diseases. In particular, hypertension can be mitigated via CB1 agonism and impaired adrenoceptor responsiveness prevented by functional GPR55.Taken together, current insights identify the cannabinoid system as promising target not only to therapeutically interfere with the vasculature, but also to affect the heart as target organ. This review discusses current knowledge regarding a direct cardiac role of the cannabinoid system and points out its feasible therapeutic manipulation in the ischaemic myocardium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号