首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cucumber (Cucumis sativus L.) seedlings grown in microgravity developed a peg on each side of the transition zone between hypocotyl and root, whereas seedlings grown in a horizontal position on the ground developed a peg on the concave side of the gravitropically bending transition zone. The morphological features of the space-grown seedlings were similar to those of seedlings grown in a vertical position on the ground with their radicles pointing down: both became two-pegged seedlings. Morphogenesis of cucumber seedlings is thus inhibited by gravity. Analysis by in-situ hybridization of an auxin-inducible gene, CS-IAA1, showed that its mRNA accumulated to a much greater extent on the lower side of the transition zone in the horizontally placed seedlings on the ground just prior to and during the initiation period of peg formation. On the other hand, when seedlings were grown in microgravity or in a vertical position on the ground, accumulation of CS-IAA1 mRNA occurred all around the transition zone. Accumulation of CS-IAA1 mRNA in horizontally grown seedlings appreciably decreased on the upper side of the transition zone and increased on the lower side upon gravistimulation, compared with the two-pegged seedlings. Application of IAA to seedlings in a horizontal position caused the development of a peg on each side of the transition zone, or a collar-like protuberance, depending on the concentration used. These results suggest that upon gravistimulation the auxin concentration on the upper side of the horizontally placed transition zone is reduced to a level below the threshold value necessary for peg formation. Space-grown seedlings of cucumber might develop two pegs symmetrically because the auxin level in the entire transition zone is maintained above the threshold. This spaceflight experiment verified for the first time that auxin does not redistribute in microgravity. Received: 10 February 2000 / Accepted: 15 March 2000  相似文献   

2.
Morphogenesis in cucumber seedlings is negatively controlled by gravity   总被引:4,自引:0,他引:4  
 Seedlings of most cucurbitaceous plants develop a peg (protuberance caused by cell outgrowth) on the transition zone between the hypocotyl and root. The peg is necessary for removing the seed coat after germination. In our spaceflight experiments on the STS-95 space shuttle, Discovery, we found that cucumber (Cucumis sativus L.) seedlings grown under microgravity conditions developed two pegs symmetrically at the transition zone. Thus, cucumber seedlings potentially develop two pegs and do not require gravity for peg formation itself, but on the ground the development of one peg is suppressed in response to gravity. This may be considered as negative control of morphogenesis by gravity. Received: 17 August 1999 / Accepted: 4 October 1999  相似文献   

3.
 A cDNA fragment encoding a Lupinus albus. L. class-III chitinase, IF3, was isolated, using a cDNA probe from Cucumis sativus L., by in-situ plaque hybridization from a cDNA library constructed in the Uni-ZAP XR vector, with mRNAs isolated from mature lupin leaves. The cDNA had a coding sequence of 293 amino acids including a 27-residue N-terminal signal peptide. A class-III chitinase gene was detected by Southern analysis in the L. albus genome. Western blotting experiments showed that the IF3 protein was constitutively present during seed development and in all the studied vegetative lupin organs (i.e., roots, hypocotyls and leaves) at two growth stages (7- and 20-d-old plants). Accumulation of both the IF3 mRNA and IF3 protein was triggered by salicylic acid treatment as well as by abiotic (UV-C light and wounding) and biotic stress conditions (Colletotrichum gloeosporioides infection). In necrotic leaves, IF3 chitinase mRNA was present at a higher level than that of another mRNA encoding a pathogenesis-related (PR) protein from L. albus (a PR-10) and that of the rRNAs. We suggest that one role of the IF3 chitinase could be in the defense of the plant against fungal infection, though our results do not exclude other functions for this protein. Received: 15 March 1999 / Accepted: 12 July 1999  相似文献   

4.
Beligni MV  Lamattina L 《Planta》2000,210(2):215-221
Seed germination, greening of etiolated plants and inhibition of hypocotyl elongation are stimulated by light, which is sensed by various types of photoreceptor. Nitric oxide (NO) has proven to be a bioactive molecule, especially in mammalian cells and, most recently, in plants. Like some phytochrome-dependent processes, many NO-mediated ones are accomplished through increases in cGMP levels. Given these similarities, we proposed that NO could take part in light-mediated events in plants. Here we show that NO promotes seed germination and de-etiolation, and inhibits hypocotyl and internode elongation, processes mediated by light. Two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine induced germination of lettuce (Lactuca sativa L. cv. Grand Rapids) seeds in conditions in which this process is dependent on light (e.g. 26 °C). This was a dose-dependent response and was arrested by addition of an NO scavenger, carboxy-PTIO. In addition, nitrite and nitrate, two NO-decomposition products were ineffective in stimulating germination. Wheat seedlings sprayed with SNP and grown in darkness contained 30–40% more chlorophyll than control seedlings. Nitric-oxide-mediated partial greening was increased by light pulses, wounding and biotic stress. Arabidopsis thaliana (L.) Heynh. (ecotype Columbia) and lettuce seedlings grown in the dark had 20%-shorter hypocotyls in NO treatments than in control ones. On the other hand, internode lengths of potato plants growing under low light intensity and sprayed with 100 μM SNP were also 20% shorter than control ones. These results implicate NO as a stimulator molecule in plant photomorphogenesis, either dependent on or independent of plant photoreceptors. Received: 27 April 1999 / Accepted: 16 June 1999  相似文献   

5.
 Cell division and cell differentiation are key processes in shoot development. The Arabidopsis thaliana (L.) Heynh. SCHIZOID (SHZ) gene appears to influence cell differentiation and cell division in the shoot. The shz-2 mutant is notable in that distinct phenotypes develop, depending on the environment in which the plants are grown. When shz-2 mutants are grown in petri dishes, callus develops from the petiole and hypocotyl. In contrast, when the mutants are grown on soil, shoots appear externally stunted with malformed leaves. However, detailed examination of soil-grown mutants shows that the two phenotypes are related. Soil-grown mutants form adventitious meristems, produce a large amount of vascular tissues and have aberrant cell divisions in the meristem. Cells with abnormal cell-division patterns were found in the apical and vascular meristems, suggesting SHZ influences cell division. Development of callus in petri dishes, development of adventitious meristems and aberrations in leaves on soil suggest that SHZ influences cell differentiation. The distinct, but related phenotypes on soil and in petri dishes suggests that SHZ normally functions to regulate differentiation and/or cell division in a manner that is responsive to environmental conditions. Received: 30 July 1999 / Accepted: 22 September 1999  相似文献   

6.
Wan C  La Y  Zhu H  Yang Y  Jiang L  Chen Y  Feng G  Li H  Sang H  Hao X  Zhang G  He L 《Amino acids》2007,32(1):101-108
Summary. In this study we focused on detecting schizophrenia related changes of plasma proteins using proteomic technology and examining the relation between schizophrenia and haptoglobin (Hp) genotype. We investigated plasma proteins from schizophrenic subjects (n = 42) and healthy controls (n = 46) by two-dimensional gel electrophoresis (2-DE) in combination with mass spectrometry. To further reveal the genetic relationship between acute phase proteins (APPs) and schizophrenia disease, we tested Hp α1/Hp α2 (Hp 1/2) polymorphism and two single nucleotide polymorphisms (SNPs) of Hp, rs2070937 and rs5473, for associations with schizophrenia in the Chinese Han population. With the relatively high number of samples for 2-DE work, we found that four proteins in the family of positive APPs were all up-regulated in patients. In genetic association study, we found significant associations existing between schizophrenia and Hp polymorphisms, Hp 1/2 and rs2070937 variants. Schizophrenia is accompanied by both an altered expression of Hp protein and a different genotype distribution of Hp gene, demonstrating that Hp is associated with schizophrenia. The results from proteomic and genomic aspects both indicate that acute phase reaction is likely to be an aetiological agent in the pathophysiology of schizophrenia, but not just an accompanying symptom. The positive APPs are schizophrenic related proteins, with the highly concordant results on four positive APPs. The first two authors contributed equally.  相似文献   

7.
Chak RK  Thomas TL  Quatrano RS  Rock CD 《Planta》2000,210(6):875-883
 The ABA INSENSITIVE1 (ABI1) and ABI2 genes encode homologous type-2C protein phosphatases with redundant yet distinct functions in abscisic acid (ABA) responses. Results from Northern blot analysis showed that ABA- and mannitol-inducible expression of the COR47 and COR78/LTI78/RD29A (COR78) genes was more impaired in the abi2 mutant of Arabidopsis thaliana (L.) Heynh than in the abi1 mutant. Furthermore, ABA-plus-mannitol treatments were additive towards COR47 gene expression; however, the ABA-deficient aba1 mutant showed reduced COR expression relative to the wild type in response to mannitol and ABA-plus-mannitol treatments. These results support the notion that drought- and ABA-signalling pathways are separate yet overlapping. To facilitate quantitative analysis of the genetic control of tissue-specific ABA- and desiccation-response pathways, we analyzed ABA- and mannitol-inducible expression of a carrot (Daucus carota L.) Dc3 promoter:uidA (β-glucuronidase; GUS) chimaeric reporter (Dc3-GUS) in transgenic wild-type, ABA-deficient aba1, and ABA-insensitive abi1 and abi2 mutants. The Dc3 promoter directed ABA- and mannitol-inducible GUS expression in Arabidopsis guard cells and the two treatments were additive. The aba1, abi1, and abi2 mutant genotypes had reduced GUS expression in guard cells of cotyledons in response to mannitol, whereas abi1 and abi2 mutants were reduced in ABA-inducible GUS expression, consistent with overlapping ABA- and drought-response pathways. Quantitative fluorometric GUS assays of leaf extracts showed that abi2 mutants responded less to exogenous ABA than did abi1 mutants, and abi2 mutants responded more to mannitol than did abi1 mutants. We conclude that Dc3-GUSArabidopsis is a tractable system in which to study tissue-specific ABA and drought signalling and suggest that ABI2 functions predominantly over ABI1 in COR78 and COR47 gene expression and guard-cell Dc3-GUS expression. Received: 23 May 1999 / Accepted: 3 December 1999  相似文献   

8.
Huang J  Takano T  Akita S 《Planta》2000,211(4):467-473
 Rice is the only cereal in which germination and coleoptile elongation occur in hypoxia or anoxia. Little is known of the molecular basis directly underlying coleoptile cell extension. In this paper, we describe the expression of α-expansin genes in embryos during seed development and young seedlings grown under various oxygen concentrations. The genes Os-EXP2 and Os-EXP1 were predominantly expressed in the developing seeds, mainly in newly developed leaves, coleoptiles, and seminal roots. These expansins expressed in the developing seeds may give cells the potential to expand after seed imbibition begins. In coleoptiles, Os-EXP4 and Os-EXP2 mRNAs were greatly induced by submergence, while they were weakly detected in aerobic or anoxic conditions. Under submerged soil conditions, the signals hybridized with probes Os-EXP4 and Os-EXP2 in coleoptiles were strongest when coleoptiles elongated in the water layer. These data show that expansin gene expression is highly correlated with coleoptile elongation in response to oxygen concentrations. The Os-EXP4 gene was also expressed in leaves, mesocotyls, and coleorhizas of young seedlings. The growth of these tissues was also correlated with the presence of expansins. Therefore, the evidence derived from this study clearly demonstrates that expansins are indispensable for the growing tissues of rice seedlings. Received: 23 December 1999 / Accepted: 24 February 2000  相似文献   

9.
Nishiwaki M  Fujino K  Koda Y  Masuda K  Kikuta Y 《Planta》2000,211(5):756-759
Seedlings of carrot (Daucus carota L. cv. Red Cored Chantenay) formed somatic embryos when cultured on medium containing abscisic acid (ABA) as the sole source of growth regulator. The number of embryos per number of seedlings changed depending on the concentration of ABA added to the medium, with a maximum embryo number at 1 × 10−4 M ABA. Seedling age was critical for response to exogenous ABA; no seedling with a hypocotyl longer than 3.0 cm was able to form an embryo. Removal of shoot apices from seedlings completely inhibited the embryogenesis induced by application of exogenous ABA, suggesting that the action of ABA requires some substance(s) that is translocated basipetally from shoot apices through hypocotyls. Histologically, somatic embryos shared common epidermal cells and differentiated not through the formation of embryogenic cell clumps, but directly from epidermal cells. These morphological traits are distinct from those of embryogenesis via formation of embryogenic cell clumps, which has been found in embryogenic carrot cultures established using 2,4-dichlorophenoxyacetic acid or other auxins. These results suggest that ABA acts as a signal substance in stress-induced carrot seedling somatic embryogenesis. Received: 22 April 2000 / Accepted: 8 June 2000  相似文献   

10.
Summary. The present study aimed to examine the presence and define the role of 4F2hc, a glycoprotein associated with the LAT2 amino acid transporter, in L-DOPA handling by LLC-PK1 cells. For this purpose we have measured the activity of the apical and basolateral inward and outward transport of [14C] L-DOPA in cell monolayers and examined the influence of 4F2hc antisense oligonucleotides on [14C] L-DOPA handling. The basal-to-apical transepithelial flux of [14C] L-DOPA progressively increased with incubation time and was similar to the apical-to-basal transepithelial flux. The spontaneous and the L-DOPA-stimulated apical fractional outflow of [14C] L-DOPA were identical to that through the basal cell side. The L-DOPA-induced fractional outflow of [14C] L-DOPA through the apical or basal cell side was accompanied by marked decreases in intracellular levels of [14C] L-DOPA. In cells treated with an antisense oligonucleotide complementary to 4F2hc mRNA for 72 h, [14C] L-DOPA inward transport and 4F2hc expression were markedly reduced. Treatment with the 4F2hc antisense oligonucleotide markedly decreased the spontaneous fractional outflow of [14C] L-DOPA through the apical or the basal cell side. It is likely that the Na+-independent and pH-sensitive uptake of L-DOPA include the hetero amino acid exchanger LAT2/4F2hc, which facilitates the trans-stimulation of L-DOPA and its outward transfer at both the apical and basal cell sides.  相似文献   

11.
 The roles of gibberellins, abscisic acid and phytochrome B in the vernalization response were investigated by combining mutations causing defects in their biosynthesis and response with the Arabidopsis thaliana (L.) Heynh. fca-1 mutation. The fca-1 mutation confers a very late-flowering phenotype which can be reversed to wild-type flowering if the seedlings are vernalized. Vernalization was unaffected in ga1-3, gai, abi1-1, abi2-1, abi3-1 and phyB-1 backgrounds, suggesting that gibberellin action mediated via GA1 and GAI, abscisic acid action mediated through ABI1 and ABI2, and phytochrome B, function independently of vernalization. However, the mutations did interact with fca-1 to change flowering time in the absence of vernalization. The abi1 fca-1 and abi2 fca-1 double mutants flowered earlier than fca-1 implying a role for abscisic acid in floral repression. Combination of ga1-3 or gai with fca-1 unexpectedly resulted in opposite interactions, with gai partially suppressing the late flowering of fca-1. Received: 17 July 1999 / Accepted: 11 October 1999  相似文献   

12.
Nakazono M  Imamura T  Tsutsumi N  Sasaki T  Hirai A 《Planta》2000,210(2):188-194
Two cDNA clones encoding F1F0-ATPase inhibitor proteins, which are loosely associated with the F1 part of the mitochondrial F1F0-ATPase, were characterized from rice (Oryza sativa L. cv. Nipponbare). A Northern hybridization showed that the two genes (designated as IF 1 -1 and IF 1 -2) are transcribed in all the organs examined. However, the steady-state mRNA levels varied among organs. A comparison of the deduced amino acid sequences of the two IF 1 genes and the amino acid sequence of the mature IF1 protein from potato revealed that IF1-1 and IF1-2 have N-terminal extensions with features that are characteristic of a mitochondrial targeting signal. To determine the subcellular localization of the gene products, the IF1-1 or IF1-2 proteins were fused in frame to the green fluorescent protein (GFP) or the fused GFP-β-glucuronidase, and expressed transiently in onion or dayflower epidermal cells. Localized fluorescence was detected in mitochondria, confirming that the two IF1 proteins are targeted to mitochondria. Received: 9 July 1999 / Accepted: 17 August 1999  相似文献   

13.
Purified malformin A1 (cyclo-D-Cys-D-Cys-L-Val-D-Leu-L-lle), a cyclicpentapeptide toxin fromAspergillus niger, was applied to the hypocotyl segments of mung bean (Vigna radiata L.) seedlings to investigate its role in regulating ethylene biosynthesis. Production of ethylene was induced by treating the plants with 0.1 mM indole-3-acetic acid (1AA). When 0.1 μM malformin A1 was then applied, ethylene production increased and the activities of two key enzymes for its biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC)-synthase (ACS) and ACC-oxidase (ACO), were also stimulated. However, at levels of 1 or 10 μM malformin A1, both ethylene production and enzymatic activities were significantly reduced. In the case of ACO,in vitro activity was regulated by malformin A1, independent of ACS activity or the influence of IAA. Furthermore, the conjugate form of ACC, N-malonyl ACC, was significantly promoted by treatment with 0.1 μM malformin A1. These data suggest that malformin A1 can modulate ethylene production through diverse paths and that its effect depends on the concentration of the treatment administered.  相似文献   

14.
15.
 In walnut (Juglans regia L.), an otherwise difficult-to-root species, explants of cotyledons have been shown to generate complete roots in the absence of exogenous growth regulators. In the present study, this process of root formation was shown to follow a pattern of adventitious, rather than primary or lateral, ontogeny: (i) the arrangement of vascular bundles in the region of root formation was of the petiole type; (ii) a typical root primordium was formed at the side of the procambium within a meristematic ring of actively dividing cells located around each vascular bundle; (iii) the developing root apical meristem was connected in a lateral way with the vascular bundle of the petiole. This adventitious root formation occurred in three main stages of cell division, primordium formation and organization of apical meristem. These stages were characterized by expression of LATERAL ROOT PRIMORDIUM-1 and CHALCONE SYNTHASE genes, which were found to be sequentially expressed during the formation of the primordium. Activation of genes related to root cell differentiation started at the early stage of primordium formation prior to organization of the root apical meristem. The systematic development of adventitious root primordia at a precise site gave indications on the positional and biochemical cues that are necessary for adventitious root formation. Received: 30 July 1999 / Accepted: 16 February 2000  相似文献   

16.
 Increased ethylene evolution accompanies seed germination of many species including Pisum sativum L., but only a little is known about the regulation of the ethylene biosynthetic pathway in different seed tissues. Biosynthesis of the direct ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the expression of ACC oxidase (ACO), and ethylene production were investigated in the cotyledons and embryonic axis of germinating pea seeds. An early onset and sequential induction of ACC biosynthesis, accumulation of Ps-ACO1 mRNA and of ACO activity, and ethylene production were localized almost exclusively in the embryonic axis. Maximal levels of ACC, Ps-ACO1 mRNA, ACO enzyme activity and ethylene evolution were found when radicle emergence was just complete. Treatment of germinating seeds with ethylene alone or in combination with the inhibitor of ethylene action 2,5-norbornadiene showed that endogenous ethylene regulates its own biosynthesis through a positive feedback loop that enhances ACO expression. Accumulation of Ps-ACO1 mRNA and of ACO enzyme activity in the embryonic axis during the late phase of germination required ethylene, whereas Ps-ACS1 mRNA levels and overall ACC contents were not induced by ethylene treatment. Ethylene did not induce ACO in the embryonic axis during the early phase of germination. Ethylene-independent signalling pathways regulate the spatial and temporal pattern of ethylene biosynthesis, whereas the ethylene signalling pathway regulates high-level ACO expression in the embryonic axis, and thereby enhances ethylene evolution during seed germination. Received: 28 September 1999 / Accepted: 27 December 1999  相似文献   

17.
A β-glucosidase that cleaves the biologically inactive hormone conjugates cytokinin-O- and kinetin-N3-glucosides is encoded by the maize Zm-p60.1 gene. The expression of the Zm-p60.1 gene was analyzed by Northern blot analysis and in-situ hybridization. It was found that the expression levels of the Zm-p60.1-specific mRNA changed after pollination of carpellate inflorescences. The Zm-p60.1 cDNA was expressed in E. coli and antibodies were raised against this protein. An antibody was used to determine the tissue-specific localization of this protein. By in situ immunolocalization experiments, this protein was found to be located in cell layers below the epidermis and around the vascular bundles of the coleoptile. In the primary leaf, the Zm-p60.1 protein was detected in cells of the outermost cell layer and around the vascular tissue. In floral tissue, Zm-p60.1 was present in the glumes, the carpels and in the outer cell layer of the style. In coleoptiles, as determined by immuno-electronmicroscopy, the Zm-p60.1 protein was located exclusively in the plastids. Received: 11 August 1998 / Accepted: 30 December 1998  相似文献   

18.
Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells   总被引:1,自引:0,他引:1  
Summary. Taurine has been reported to enhance cholesterol 7α-hydroxylase (CYP7A1) mRNA expression in animal models. However, no in vitro studies of this effect have been reported. The Hep G2 human hepatoma cell line has been recognized as a good model for studying the regulation of human CYP7A1. This work characterizes the effects of taurine on CYP7A1 mRNA levels of Hep G2 cells in a dose- and time-dependent manner. In the dose-dependent experiment, Hep G2 cells were treated with 0, 2, 10 or 20 mM taurine in the presence or absence of cholesterol 0.2 mM for 48 h. In the time-dependent experiment, Hep G2 cells were treated with 0 or 20 mM taurine for 4, 24 and 48 h with and without cholesterol 0.2 mM. Our data revealed that taurine showed time- and dose-response effects on CYP7A1 mRNA levels in Hep G2 cells. However, glycine – a structural analogue of taurine – did not have an effect on CYP7A1 gene expression. These results show that, in agreement to previous studies on animal models, taurine induces the mRNA levels of CYP7A1 in Hep G2 cells, which could enhance cholesterol conversion into bile acids. Also, Hep G2 cell line may be an appropriate model to study the effects of taurine on human cholesterol metabolism.  相似文献   

19.
 The levels of different cytokinins, indole-3-acetic acid (IAA) and abscisic acid (ABA) in roots of Glycine max [L.] Merr. cv. Bragg and its supernodulating mutant nts382 were compared for the first time. Forty-eight hours after inoculation with Bradyrhizobium, quantitative and qualitative differences were found in the root's endogenous hormone status between cultivar Bragg and the mutant nts382. The six quantified cytokinins, ranking similarly in each genotype, were present at higher concentrations (30–196% on average for isopentenyl adenosine and dihydrozeatin riboside, respectively) in mutant roots. By contrast, the ABA content was 2-fold higher in Bragg, while the basal levels of IAA [0.53 μmol (g DW)−1, on average] were similar in both genotypes. In 1 mM NO3 -fed Bragg roots 48 h post-inoculation, IAA, ABA and the cytokinins isopentenyl adenine, and isopentenyl adenosine quantitatively increased with respect to uninoculated controls. However, only the two cytokinins increased in the mutant. High NO3 (8 mM) markedly reduced root auxin concentration, and neither genotypic differences nor the inoculation-induced increase in auxin concentration in Bragg was observed under these conditions. Cytokinins and ABA, on the other hand, were little affected by 8 mM NO3 . Root IAA/cytokinin and ABA/cytokinin ratios were always higher in Bragg relative to the mutant, and responded to inoculation (mainly in Bragg) and nitrate (both genotypes). The overall results are consistent with the auxin-burst-control hypothesis for the explanation of autoregulation and supernodulation in soybean. However, they are still inconclusive with respect to the inhibitory effect of NO3 . Received: 16 April 1999 / Accepted: 13 December 1999  相似文献   

20.
Hirner AA  Seitz HU 《Planta》2000,210(6):993-998
 Two isoforms of chalcone synthase (CHS) were isolated from cDNA libraries derived from UV-A-irradiated anthocyanin-accumulating (DCb) and non-accumulating (DCs) cell cultures of carrot (Daucus carota L.). The clones designated as DcCHS1, which were present only in the DCb library, had a deduced primary sequence of 389 amino acids and an expected molecular mass of 42.7 kDa, and seem to be alleles of those cloned by Ozeki et al. (1993). The second isoform (DcCHS2) was present in both libraries. It had the highest degree of similarity (97.7%) to parsley CHS over all 397 amino acids. The expected molecular mass of the corresponding protein was 43.6 kDa. Results obtained from Southern blot analysis indicated the existence of at least two CHS genes in carrot. A transient enhancement of the DcCHS1 mRNA level after continuous irradiation with UV-A light could only be observed in anthocyanin-accumulating cultures, whereas an increase in DcCHS2 mRNA was seen in both cell lines. The maximum accumulation of CHS mRNA occurred 48 h after the onset of UV-A irradiation. In the European wild carrot the accumulation of DcCHS1 mRNA was restricted to the red central flowers, whereas the DcCHS2 mRNA was detectable in all red and white petals, as well as leaves, but was absent in stems and roots. The expression of DcCHS1 was restricted to anthocyanin-accumulating cells or organs. The heterologous expression of both cDNAs in Escherichia coli resulted in immunostainable bands of different sizes on the Western blot and high levels of catalytic CHS activity. Received: 2 September 1999 / Accepted: 30 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号