首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of the 4-methyl, the 2,4-dimethyl, and the 2,3,6-trimethyl ethers of methyl α-D-mannopyranoside has been accomplished by the use of selective, benzoyl protecting groups, the 1-ethoxyethyl protecting group, and methylation with diazomethane. Considerable differences were noted in the i.r.- and n.m.r.-spectroscopic and t.l.c. properties of the diastereoisomers of methyl 4-O-[1-ethoxyethyl]-α-D-mannopyranoside. A structure, analogous to that of trans-decalin, maintained by intramolecular hydrogen-bonding is proposed for these compounds. The differences in physical properties of the two diastereoisomers are interpreted on the basis that the (R) isomer has an axially attached methyl group, and, therefore, the ring involved cannot be so stable as that of the (S) isomer.  相似文献   

2.
Methyl 3-O- and 2-O-carbamoyl-α-D-mannopyranosides, (2 and 3), were synthesized from methyl α-D-mannopyranoside via ammonolysis of a cyclic carbonate or a p-nitrophenoxycarbonate, as shown in Charts 1 and 2. Carbamoyl-group migration between the C-2 and C-3 hydroxyl groups, in methyl α-D-mannopyranoside under alkaline conditions, was also studied.  相似文献   

3.
When equimolar ratios of mesyl chloride and methyl 2,6-di-O-mesyl-α-D-glucopyranoside were allowed to react in pyridine and the product resolved by preparative t.l.c., the 2,6-di-, 2,3,6-tri-, 2,4,6-tri-, and 2,3,4,6-tetra-mesyl esters were obtained in (0.5–0.6):1:(4–5):(1-2-1.4) molar ratio. Benzoylation of either the isolated 2,4,6-tri-O-mesyl ester or, more conveniently, the mixture from monomesylation gave the crystalline methyl 3-O-benzoyl-2,4,6-triO-mesyl-α-D-glucopyranoside (8). As both of these trimesyl esters (7 and 8) are unreported, isolation of the benzoate established the 2,4,6-ester arrangement, and the 2,3,6-triester was prepared by standard methods. Treating methyl α-D-glucopyranoside with 3 molar equivalents of mesyl chloride and, subsequently, with 1 molar equivalent of benzoyl chloride, proved a convenient method for preparing the 3-O-benzoyl derivative in moderate yield. Monotosylation of methyl 2,6-di-O mesyl-α-D-glucopyranoside was not so definitive as mesylation, but a molar ratio of 1:2.8 for the 3-O-tosyl:4-O-tosyl product was derived from n.m.r. data. This work, when combined with literature reports, establishes that, in methyl α-D-glucopyranoside, the reactivity toward sulfonylation is 6-OH>2-OH>4-OH>3-OH.  相似文献   

4.
Decarboxylative elimination of methyl 2,3-di-O-benzyl-α-D-glucopyranosiduronic acid (1) with N,N-dimethylformamide dineopentyl acetal in N,N-dimethylformamide gave methyl 2,3-di-O-benzyl-4-deoxy-β-L-threo-pent-4-enopyranoside (3). Debenzylation of 3 was effected with sodium in liquid ammonia to give methyl 4-deoxy-β-L-threo-pent-4-enopyranoside (4). Hydrogenation of 3 catalyzed by palladium-on-barium sulfate afforded methyl 2,3-di-O-benzyl-4-deoxy-β-L-threo-pentopyranoside (5), whereas hydrogenation of 3 over palladium-on-carbon gave methyl 4-deoxy-β-L-threo-pentopyranoside (6). An improved preparation of methyl 4,6-O-benzylidene-α-D-glucopyranoside is also described.  相似文献   

5.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

6.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation–reduction sequence at C-2′. The β-manno configurations of the final deprotected congeners 2–7 were confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the protective epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

7.
Optically pure 2-acetamido-2-deoxy-3-O-α-L-fucopyranosyl-α-D-glucose was synthesized by the Koenigs-Knorr reaction of 2-O-benzyl-3,4-di-O-p-nitrobenzoyl-α-L-fucopyranosyl bromide with benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-D-glucopyrainoside. Reaction of 2,3,4-tri-O-acetyl-α-L-fucopyranosyl bromide gave the β-L-fucopyranosyl anomer. In contrast to the stereospecificity shown in this reaction by these two bromides, 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide afforded a mixture of α-L and β-L anomers in almost equimolar proportions. The disaccharides synthesized were crystallized and characterized, and their optical purity demonstrated by g.l.c. of the per(trimethylsilyl) ethers of the corresponding alditols.  相似文献   

8.
2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-α,β-D-glucopyranosylammonium phosphate was prepared by the action of crystalline phosphoric acid on 2-acetamido-1,3,4,6-tetra-O-acetyl-β-D-glucopyranose. The α-D anomer (3) was the main product, and was isolated pure by preparative thin-layer chromatography or by removal of the β-D anomer (6) by selective acid hydrolysis. Ficaprenyl phosphate was prepared from ficaprenol, obtained as an isomeric mixture (mainly C55) from an extract of Ficus elastica. Compound 3 was converted into the free acid and then into the tributyl-ammonium salt, which was treated with P1-diphenyl P2-ficaprenyl pyrophosphate to give the acetylated pyrophosphate diester 8, characterized by analytical, spectral, and hydrogenolytic studies. Deacetylation of 8 gave the synthetic “lipid intermediate”, P1-(2-acetamido-2-deoxy-D-glucopyranosyl) P2-ficaprenyl pyrophosphate (9), the properties of which were compared with those of natural substances considered to be active in the biosynthesis of teichoic acids.  相似文献   

9.
By a modification of a previously established reaction-sequence involving successive oxidation with methyl sulfoxide-acetic anhydride, oximation, and reduction with lithium aluminum hydride, 6-O-tritylamylose (1) was converted into a 6-O-tritylated (1→4)-α-D-linked glucan (3) containing 2-amino-2-deoxy-D-glucose residues and some O-(methylthio)methyl groups. Removal of the ether groups from this product gave a 2-aminated amylose (4) of degree of substitution (d.s.) by amine of 0.54 that underwent cleavage by fungal alpha-amylase to give oligosaccharides containing amino sugar residues. N-Trifluoroacetylation of 3 followed by removal of the ether groups, oxidation at C-6 with oxygen-platinum, and removal of the N-substituent, gave a (1 →4)-2-amino-2-deoxy-α-D-glucopyranuronan 7 having d.s. by amine of up to 0.65, and by carboxyl, of 0.46. Sulfation of this product with sulfur trioxide-pyridine and then with chlorosulfonic acid-pyridine gave a (1→4)-2-deoxy-2-sulfoamino-α-D-glucopyranuronan, isolated as its sodium salt 8, which showed appreciable blood-anticoagulant activity.  相似文献   

10.
Golgi-rich membranes from porcine liver have been shown to contain an enzyme that transfers l-fucose in α-(1→6) linkage from GDP-l-fucose to the asparagine-linked 2-acetamido-2-deoxy-d-glucose r residue of a glycopeptide derived from human α1-acid glycoprotein. Product identification was performed by high-resolution, 1H-n.m.r. spectroscopy at 360 MHz and by permethylation analysis. The enzyme has been named GDP-l-fucose: 2-acetamido-2-deoxy-β-d-glucoside (Fuc→Asn-linked GlcNAc) 6-α-l-fucosyltransferase, because the substrate requires a terminal β-(1→2)-linked GlcNAc residue on the α-Man (1→3) arm of the core. Glycopeptides with this residue were shown to be acceptors whether they contained 3 or 5 Man residues. Substrate-specificity studies have shown that diantennary glycopeptides with two terminal β-(1→2)-linked GlcNAc residues and glycopeptides with more than two terminal GlcNAc residues are also excellent acceptors for the fucosyltransferase. An examination of four pairs of glycopeptides differing only by the absence or presence of a bisecting GlcNAc residue in β-(1→4) linkage to the β-linked Man residue of the core showed that the bisecting GlcNAc prevented 6-α-l-fucosyltransferase action. These findings probably explain why the oligosaccharides with a high content of mannose and the hybrid oligosaccharides with a bisecting GlcNAc residue that have been isolated to date do not contain a core l-fucosyl residue.  相似文献   

11.
Using the imidate procedure, 2,3,4,6-tetra-O-benzyl-1-O-(N-methylacetimidoyl)-β-d-galactopyranose was condensed with various monosaccharides to provide, in good yield and with high stereoselectivity, α-linked disaccharides.  相似文献   

12.
Benzoylation of benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-α-d-glucopyranoside, benzyl 2-deoxy-2-(dl-3-hydroxytetradecanoylamino)-4,6-O-isopropylidene-α-d-glucopyranoside, and benzyl 2-deoxy-4,6-O-isopropylidene-2-octadecanoylamino-β-d-glucopyranoside, with subsequent hydrolysis of the 4,6-O-isopropylidene group, gave the corresponding 3-O-benzoyl derivatives (4, 5, and 7). Hydrogenation of benzyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside, followed by chlorination, gave a product that was treated with mercuric actate to yield 2-acetamido-1,4,6-tri-O-acetyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucopyranose (11). Treatment of 11 with ferric chloride afforded the oxazoline derivative, which was condensed with 4, 5, and 7 to give the (1→6)-β-linked disaccharide derivatives 13, 15, and 17. Hydrolysis of the methyl ester group in the compounds derived from 13, 15, and 17 by 4-O-acetylation gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives 19–21 in excellent yields. Hydrolysis of 19–21, followed by hydrogenation, gave the respective O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→6)-2-acylamino-2-deoxy-d-glucoses in good yields. The immunoadjuvant activity of these compounds was examined in guinea-pigs.  相似文献   

13.
The crystal and molecular structure of potassium β-d-glucopyranose 6-sulphate has been determined by direct methods. The sugar ring has the expected 4C1 conformation although the sulphate group causes flattening of the ring. The potassium ion has octahedral co-ordination involving oxygen atoms of five independent β-d-glucopyranose 6-sulphate molecules. The n.m.r. spectrum of the 6-sulphate in the solid state is consistent with the occurrence of two molecules in the unit cell related by a 21 symmetry axis.  相似文献   

14.
The effect of phenols on the hydrolysis of substituted phenyl β-d-gluco- and β-d-xylo-pyranosides by β-d-glucosidase from Stachybotrys atra has been investigated. Depending on the glycon part of the substrate and on the phenol substituent, the hydrolysis is either inhibited or activated. With aryl β-d-xylopyranosides, transfer of the xylosyl residue to the phenol, with the formation of new phenyl β-d-xylopyranosides, is observed. With aryl β-d-glucopyranosides, such transfer does not occur when phenols are used as acceptors, but it does occur with anilines. A two-step mechanism, in which the first step is partially reversible, is proposed to explain these observations. A qualitative analysis of the various factors determining the overall effect of the phenol is given.  相似文献   

15.
The crystal structure of 1,6-anhydro-β-d-mannopyranose, C6H10O5, is orthorhombic, P212121, with a = 10.971(2), b = 13.935(3), c = 9.012(1) Å, V = 1377.76 »3 (MoKα, λ = 0.7107 Å), Z = 8, Dx = 1.563 M.gm−3, Dm = 1.565 M.gm−3. the structure was solved by MULTAN and refined to R(F) = 0.043 for 2355 reflections. The two symmetry-independent molecules in the unit cell have similar conformations, except for the orientation of one of the three hydroxyl groups. The conformation of the pyranose rings is 1C4 distorted towards Eo, and that of the anhydro rings is E. There are significant differences between the two molecules in two of the four C---O bond-lengths. These occur where there are important differences in the hydrogen-bonding environment of the oxygen atoms. The molecules are hydrogen-bonded by three linear and three bifurcated O---H···O interactions which form four-membered loops linked into infinite chains. Empirical force-field calculations with MMI-CARB reproduced the geometry of the molecules within the variations observed experimentally between the two molecules, except for a C---O bond in one of the molecules. The effect of excluding the anomeric effect from the theoretical calculations was not significant. Calculations for an intramolecularly hydrogen-bonded molecule were also carried out as a model for the molecules in a non-polar solvent.  相似文献   

16.
A general and flexible synthetic approach to biologically important 5,6-unsaturated C18-phytosphingosines was developed via olefin cross-metathesis employing truncated C6-phytosphingosines as the key intermediates. These were efficiently prepared in high yields by zinc-mediated reductive opening of methyl 2-amino-2-deoxy-β-hexopyranosides.

  相似文献   

17.
Methyl 2,3,4-tri-O-benzyl-α-D-glucopyranoside was treated with 2,3,4-tri-O-benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-D-glucopyranose in diethyl ether to give methyl 2,3,4,2',3',4'-hexa-O-benzyl-6'-O-(N-phenylcarbamoyl)-α-isomaltoside. The disaccharide was decarbanilated in ethanol with sodium ethoxide to give methyl 2,3,4,2',3',4'-hexa-O-benzyl-α-isomaltoside. The sequence of coupling with the same 1-O-tosyl-D-glucose derivative followed by removal of the N-phenylcarbamate group was repeated until the hexasaccharide derivative, methyl octadeca-O-benzyl-α-isomaltohexaoside, was formed. Methyl α-isomaltopentaoside was prepared by debenzylation of the corresponding benzylated oligosaccharide. The structures of the oligosaccharides were determined with the aid of both 1H- and 13C-n.m.r. spectroscopy. From spectral data, we estimate the coupling reaction to be 95% stereoselective.  相似文献   

18.
The reaction of methyl 2,3,4,6-tetra-O-acetyl-1-O-trimethylsilyl-β- (5) and -α-d-glucopyranuronate (6) severally with the dimethyl or diethyl acetals of formaldehyde, bromoacetaldehyde, propionaldehyde, 3-benzyloxypropionaldehyde, 5-carboxypentanal, and 2-bromohexanal in the presence of catalytic amounts of trimethylsilyl trifluoromethanesulfonate at −78° gave the corresponding (1-alkoxyalkyl) α- and β-glycosides (acetal-glucopyranosiduronates) with retention of configuration at C-1 in yields of 41–91%. Instead of the dialkyl acetals, the corresponding aldehydes and alkyl trimethylsilyl ether can be used. Deacetylation gave the corresponding methyl (acetal-β- and -α-d-glucopyranosid)uronates in good yield. De-esterification of methyl [(1R)-1-methoxybutyl β-d-glucopyranosid]uronate with esterase gave the acetal-β-d-glucopyranosiduronic acid which was an excellent substrate for β-d-glucuronidase.  相似文献   

19.
An N-acetyl-β-d-hexosaminidase has been purified from primary wheat leaves (Triticum aestivum L.) by freeze-thawing, (NH4)2SO4 precipitation, methanol precipitation, gel filtration, cation exchange chromatography and affinity chromatography on concanavalin A-Sepharose. The activity of the purified preparations could be stabilised by addition of Triton X-100 and the enzyme was stored at -20°C without significant loss of activity. The enzyme hydrolysed pNP-β-d-GlcNAc (optimum pH 5.2, Km 0.29 mM, Vmax 2.56 μkat mg−1) and pNP-β-d-GalNAc (optimum pH 4.4, Km 0.27 mM, Vmax 2.50 μkat mg−1). Five major isozymes were identified, with isoelectric points in the range 5.13–5.36. All five isozymes possessed both N-acety-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activity. Inhibition studies and mixed substrate analysis suggested that both substrates are catalysed by the same active site. Both activities were inhibited by GlcNAc, 2-acetamido-2-deoxygluconolactone, GalNAc and the ions of mercury, silver and copper. The Kis for inhibition of N-acetyl-β-d-glucosaminidase activity were: GlcNAc (15.3 mM) and GalNAc (3.4mM). For inhibition of N-acety-β-d-galactosaminidase activity the corresponding values were: GlcNAc (18.2 mM) and GalNac (2.5 mM). The enzyme was considerably less active at releasing pNP from pNP-β-d-(GlcNAc)2 and pNP-β-d-(GlcNAc)3 than from pNP-β-d-GlcNAc. The ability of the N-acetyl-β-d-hexosaminidase to relase GlcNAc from chitin oligomers (GlcNAc)2 (optimum pH 5.0) and (GlcNAc)3−6 (optimum pH 4.4) was also low. Analysis of the reaction products revealed that the initial products from the hydrolysis of (GlcNAc)n were predominantly (GlcNAc)n−1 and GlcNAc.  相似文献   

20.
Four different α-d-glucosyltransferases (GTF) have been obtained from culture filtrates of Streptococcus sobrinus strains grown in the chemostat at pH 6·5 in complex medium supplemented with Tween 80. Three of the enzymes, GTF-S1, GTF-S3 and GTF-S4, converted sucrose into soluble glucans. Their limit of hydrolysis with endodextranase, the proportion of linear to branched oligosaccharides among the end products of enzymic degradation, and methylation analysis, all supported the view that the glucans were dextrans. The S1-dextrans were highly branched (32% of α-(1 → 3)-branch points), S3-dextrans were linear, and the branching of S4-dextrans was intermediate in value (9%). The enzymes that catalyze the synthesis of three such diverse dextrans were thus proved to be three different GTF, each with a characteristic specificity. Conditions of growth in the chemostat could be varied to provide maximum yields of either GTF-S1, -S3 or -S4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号