首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1988 McCusker and Haber generated a series of mutants which are resistant to the minimum inhibitory concentration of the protein synthesis inhibitor cycloheximide. These cycloheximide-resistant, temperature-sensitive (crl) mutants, in addition, exhibited other pleiotropic phenotypes, e.g., incorrect response to starvation, hypersensitivity against amino acid analogues, and other protein synthesis inhibitors. Temperature sensitivity of one of these mutants, crl3–2, had been found to be suppressed by a mutation, SCL1–1, which resided in an α-type subunit of the 20S proteasome. We cloned the CRL3 gene by complementation and found CRL3 to be identical to the SUG1/CIM3 gene coding for a subunit of the 19S cap complex of the 26S proteasome. Another mutation, crl21, revealed to be allelic with the 20S proteasomal gene PRE3. crl3–2 and crl21 mutant cells show significant defects in proteasome-dependent proteolysis, whereas the SCL1–1 suppressor mutation causes partial restoration of crl3–2-induced proteolytic defects. Notably, cycloheximide resistance was also detected for other proteolytically deficient proteasome mutants (pre1–1, pre2–1, pre3–1, pre4–1). Moreover, proteasomal genes were found within genomic sequences of 9 of 13 chromosomal loci to which crl mutations had been mapped. We therefore assume that most if not all crl mutations reside in the proteasome and that phenotypes found are a result of defective protein degradation.  相似文献   

2.
J. H. McCusker  J. E. Haber 《Genetics》1988,119(2):317-327
Cyocloheximide resistant lethal (crl) mutants of Saccharomyces cerevisiae, defining 22 unlinked complementation groups, are unable to grow at 37 degrees. They are also highly pleiotropic at their permissive temperature of 25 degrees. The mutants are all unable to arrest at the G1 stage of the cell cycle when grown to stationary phase or when starved for a single amino acid, though they do arrest at G1 when deprived of all nitrogen. The crl mutants are also hypersensitive to various amino acid analogs and to 3-aminotriazole. These mutants also "tighten" leaky auxotrophic mutations that permit wild-type cells to grow in the absence of the appropriate amino acid. All of these phenotypes are also exhibited by gcn mutants affecting general control of amino acid biosynthesis. In addition, the crl mutants are all hypersensitive to hygromycin B, an aminoglycoside antibiotic that stimulates translational misreading. The crl mutations also suppress one nonsense mutation which is phenotypically suppressed by hygromycin B. Many crl mutants are also osmotically sensitive. These are phenotypes which the crl mutations have in common with previously isolated omnipotent suppressors. We suggest that the the crl mutations all affect the fidelity of protein translation.  相似文献   

3.
H. Y. Fan  H. L. Klein 《Genetics》1994,137(4):945-956
The hpr1Δ3 mutant of Saccharomyces cerevisiae is temperature-sensitive for growth at 37° and has a 1000-fold increase in deletion of tandem direct repeats. The hyperrecombination phenotype, measured by deletion of a leu2 direct repeat, is partially dependent on the RAD1 and RAD52 gene products, but mutations in these RAD genes do not suppress the temperature-sensitive growth phenotype. Extragenic suppressors of the temperature-sensitive growth have been isolated and characterized. The 14 soh (suppressor of hpr1) mutants recovered represent eight complementation groups, with both dominant and recessive soh alleles. Some of the soh mutants suppress hpr1 hyperrecombination and are distinct from the rad mutants that suppress hpr1 hyperrecombination. Comparisons between the SOH genes and the RAD genes are presented as well as the requirement of RAD genes for the Soh phenotypes. Double soh mutants have been analyzed and reveal three classes of interactions: epistatic suppression of hpr1 hyperrecombination, synergistic suppression of hpr1 hyperrecombination and synthetic lethality. The SOH1 gene has been cloned and sequenced. The null allele is 10-fold increased for recombination as measured by deletion of a leu2 direct repeat.  相似文献   

4.
Using molecular genetic techniques, we have generated and characterized six temperature sensitive (ts) alleles of nop2. All failed to support growth at 37°C and one was also formamide sensitive (fs) and failed to grow on media containing 3% formamide. Conditional lethality is not due to rapid turnover of mutant Nop2p proteins at 37°C. Each allele contains between seven and 14 amino acid substitutions and one possesses a nonsense mutation near the C-terminus. Mapping experiments with one allele, nop2-4, revealed that a subset of the amino acid substitutions conferred the ts phenotype and that these mutations have an additive effect. All six mutants exhibited dramatic reductions in levels of 60S ribosome subunits under non-permissive conditions as well as some reduction at permissive temperature. Processing of 27S pre-rRNA to mature 25S rRNA was defective in all six mutants grown under non-permissive conditions. Levels of the 40S ribosomal subunit and 18S rRNA were not significantly affected. Amino acid substitutions in nop2 conditional alleles are discussed in the context of the hypothesis that Nop2p functions both as an RNA methyltransferase and a trans-acting factor in rRNA processing and large ribosomal subunit biogenesis.  相似文献   

5.
Temperature-sensitive (ts) mutants of the Ace gene, which codes for acetylcholinesterase (AChE) in Drosophila melanogaster, were analyzed for defects in viability, behavior and function of the enzyme. The use of heat-sensitive and cold-sensitive mutations permited the function of AChE in the nervous system to be analyzed temporally. All ts mutations were lethal, or nearly so, when animals expressing them were subjected to restrictive temperatures during late embryonic and very early larval stages. Heat treatments to Ace-ts mid- and late larvae had little effect on the behavior of these animals or on the viability or behavior of the eventual adults. Heat-sensitive mutants exposed to nonpermissive temperatures as pupae, by contrast, had severe defects in phototaxis and locomotor activity as adults. AChE extracted from adult ts mutants that had developed at a permissive temperature were abnormally heat labile, and they had reduced substrate affinity when assayed at restrictive temperatures. However, enzyme activity did not decline during exposure of heat-sensitive adults to high temperatures even though such treatments caused decrements in phototaxis (29°) and, eventually, cessation of movement (31°). The cold-sensitive mutant also produced readily detectable levels of AChE when exposed to a restrictive temperature during the early developmental stage when this mutation causes almost complete lethality. We suggest that the relationship among the genetic, biochemical and neurobiological defects in these mutants may involve more than merely temperature-sensitive catalytic functions.  相似文献   

6.
We have analyzed the biochemical consequences of mutations that affect viral RNA synthesis in Semliki Forest virus temperature-sensitive (ts) mutants. Of the six mutations mapping in the multifunctional replicase protein nsP2, three were located in the N-terminal helicase region and three were in the C-terminal protease domain. Wild-type and mutant nsP2s were expressed, purified, and assayed for nucleotide triphosphatase (NTPase), RNA triphosphatase (RTPase), and protease activities in vitro at 24°C and 35°C. The protease domain mutants (ts4, ts6, and ts11) had reduced protease activity at 35°C but displayed normal NTPase and RTPase. The helicase domain mutation ts1 did not have enzymatic consequences, whereas ts13a and ts9 reduced both NTPase and protease activities but in different and mutant-specific ways. The effects of these helicase domain mutants on protease function suggest interdomain interactions within nsP2. NTPase activity was not directly required for protease activity. The similarities of the NTPase and RTPase results, as well as competition experiments, suggest that these two reactions utilize the same active site. The mutations were also studied in recombinant viruses first cultivated at the permissive temperature and then shifted up to the restrictive temperature. Processing of the nonstructural polyprotein was generally retarded in cells infected with viruses carrying the ts4, ts6, ts11, and ts13a mutations, and a specific defect appeared in ts9. All mutations except ts13a were associated with a large reduction in the production of the subgenomic 26S mRNA, indicating that both protease and helicase domains influence the recognition of the subgenomic promoter during virus replication.  相似文献   

7.
Although the thermophilic bacterium Thermus aquaticus grows optimally at 70°C and cannot grow at moderate temperatures, its DNA polymerase I has significant activity at 20–37°C. This activity is a bane to some PCRs, since it catalyzes non-specific priming. We report mutations of Klentaq (an N-terminal deletion variant) DNA polymerase that have markedly reduced activity at 37°C yet retain apparently normal activity at 68°C and resistance at 95°C. The first four of these mutations are clustered on the outside surface of the enzyme, nowhere near the active site, but at the hinge point of a domain that has been proposed to move at each cycle of nucleotide incorporation. We show that the novel cold-sensitive mutants can provide a hot start for PCR and exhibit slightly improved fidelity.  相似文献   

8.
S. Velmurugan  Z. Lobo    P. K. Maitra 《Genetics》1997,145(3):587-594
  相似文献   

9.
CSM. Chan  D. Botstein 《Genetics》1993,135(3):677-691
We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37°. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37°. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth.  相似文献   

10.
DRH. Evans  MJR. Stark 《Genetics》1997,145(2):227-241
Temperature-sensitive mutations were generated in the Saccharomyces cerevisiae PPH22 gene that, together with its homologue PPH21, encode the catalytic subunit of type 2A protein phosphatase (PP2A). At the restrictive temperature (37°), cells dependent solely on pph22(ts) alleles for PP2A function displayed a rapid arrest of proliferation. Ts(-) pph22 mutant cells underwent lysis at 37°, showing an accompanying viability loss that was suppressed by inclusion of 1 M sorbitol in the growth medium. Ts(-) pph22 mutant cells also displayed defects in bud morphogenesis and polarization of the cortical actin cytoskeleton at 37°. PP2A is therefore required for maintenance of cell integrity and polarized growth. On transfer from 24° to 37°, Ts(-) pph22 mutant cells accumulated a 2N DNA content indicating a cell cycle block before completion of mitosis. However, during prolonged incubation at 37°, many Ts(-) pph22 mutant cells progressed through an aberrant nuclear division and accumulated multiple nuclei. Ts(-) pph22 mutant cells also accumulated aberrant microtubule structures at 37°, while under semi-permissive conditions they were sensitive to the microtubule-destabilizing agent benomyl, suggesting that PP2A is required for normal microtubule function. Remarkably, the multiple defects of Ts(-) pph22 mutant cells were suppressed by a viable allele (SSD1-v1) of the polymorphic SSD1 gene.  相似文献   

11.
Sixteen temperature-sensitive mutants of Autographa californica nuclear polyhedrosis virus were isolated. Several interesting phenotypes were observed. A large proportion of the mutants were unable to form polyhedral occlusion bodies (polyhedra) at the nonpermissive temperature (32.5°C). At 32.5°C, one mutant formed plaques in which the cells lacked polyhedra. Another mutant type was defective in the production of progeny extracellular nonoccluded virus and produced a “plaque” consisting of only a single cell containing polyhedra at 32.5°C. One mutant was defective in plaque formation, progeny nonoccluded virus formation, and polyhedra formation at 32.5°C. Several mutants produced nonoccluded virus but failed to produce plaques or polyhedra at 32.5°C. Other phenotypes were also distinguished. Complementation analyses, performed by either measuring the increase in extracellular nonoccluded virus formation or by observing polyhedra formation in mixed infections at 32.5°C, indicated the presence of 15 complementation groups. A high frequency of recombination was observed. Four of the mutants were found to be host dependent in their temperature sensitivity for polyhedra formation.  相似文献   

12.
A temperature-sensitive (ts) third chromosome Minute (M) mutation, designated Q-III, has been recovered and characterized. Q-III heterozygotes raised at 29° exhibit all of the dominant traits of M mutants including small bristles, rough eyes, prolonged development, reduced viability and interactions with several unrelated mutations. Q-III homozygotes raised at 29° are lethal; death occurs primarily during the first larval instar. When raised at 22°, Q-III heterozygotes are phenotypically normal and Q-III homozygotes display moderate M traits. In addition, Q-III elicits ts sterility and maternal-effect lethality. As it true of M lesions, the dominant traits of Q-III are not expressed in triploid females raised at 29°. Complementation tests suggest that Q-III is a ts allele of M(3)LS4, which is located in 3L near the centromere.—Reciprocal temperature-shift experiments revealed that the temperature-sensitive period (TSP) of Q-III lethality is polyphasic, extending from the first instar to the latter half of pupation. Heat-pulse experiments further resolved this into two post-embryonic TSPs: one occurring during the latter half of the second larval instar, and the other extending from the larval/pupal boundary to the second half of pupation. In addition, heat pulses elicited a large number of striking adult phenotypes in Q-III individuals. These included pattern alterations such as deficiencies and duplications and other morphological defects in structures produced by the eye-antennal, leg, wing and genital imaginal discs and the abdominal histoblasts. Each defect or pattern alteration is associated with a specific TSP during development.—We favor the interpretation that most of the major Q-III defects, particularly the structural duplications and deficiencies, result from temperature-induced cell death in mitotically active imaginal anlagen, while the small macrochaete phene probably results from the direct effects of Q-III on bristle synthesis. The hypothesis that the Q-III locus specifices a component required for protein synthesis is discussed, and it is concluded that this hypothesis can account for the pleiotropy of Q-III, and that perhaps it can be extended to M loci in general.  相似文献   

13.
We have used genetic analysis to study the mode of action of two anti-microtubule herbicides, amiprophos-methyl (APM) and oryzalin (ORY). Over 200 resistant mutants were selected by growth on APM- or ORY-containing plates. The 21 independently isolated mutants examined in this study are 3- to 8-fold resistant to APM and are strongly cross-resistant to ORY and butamiphos, a close analog of APM. Two Mendelian genes, apm1 and apm2, are defined by linkage and complementation analysis. There are 20 alleles of apm1 and one temperature-sensitive lethal (33°) allele of apm2. Mapping by two-factor crosses places apm1 6.5 cM centromere proximal to uni1 and within 4 cM of pf7 on the uni linkage group, a genetically circular linkage group comprising genes which affect flagellar assembly or function; apm2 maps near the centromere of linkage group VIII. Allele-specific synthetic lethality is observed in crosses between apm2 and alleles of apm1. Also, self crosses of apm2 are zygotic lethal, whereas crosses of nine apm1 alleles inter se result in normal germination and tetrad viability. The mutants are recessive to their wild-type alleles but doubly heterozygous diploids (apm1 +/+ apm2) made with apm2 and any of 15 apm1 alleles display partial intergenic noncomplementation, expressed as intermediate resistance. Diploids homozygous for mutant alleles of apm1 are 4-6-fold resistant to APM and ORY; diploids homozygous for apm2 are ts(-) and 2-fold resistant to the herbicides. Doubly heterozygous diploids complement the ts(-) phenotype of apm2, but they are typically 1.5-2-fold resistant to APM and ORY. From the results described we suggest that the gene products of apm1 and apm2 may interact directly or function in the same structure or process.  相似文献   

14.
A system for genetic analysis in the cellular slime mold P. violaceum has been developed. Two growth-temperature-sensitive mutants were isolated in a haploid strain and used to select rare diploid heterozygotes arising by spontaneous fusion of the haploid cells. A recessive mutations to cycloheximide resistance in one strain enables selection of segregants, which often appear to be aneuploid.—Aggregation-defective (ag- ) mutants having a wide range of phenotypes were isolated in both temperature-sensitive strains after nitrosoguanidine treatment, and complementation tests were performed between pairs of these mutants. Of 380 diploids isolated, 32 showed defective aggregation and were considered to contain 2 noncomplementing ag- mutations. Among noncomplementing mutants interallelic complementation is common. Noncomplementing mutants fall into 4 complementation groups, and those within each complementation group are phenotypically similar. Statistical analysis of the results suggests that the number of complementation units involved in aggregation is about 50.  相似文献   

15.
In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4Q131L mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4Δ61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4.  相似文献   

16.
Out of 25,000 EMS-treated third chromosomes examined, ten dominant temperature-sensitive (DTS) lethal mutations which are lethal when heterozygous at 29 degrees C but survive at 22 degrees C were recovered. Seven of the eight mutations mapped were tested for complementation; these mutants probably define eight loci. Only DTS-2 survived in homozygous condition at 22 degrees C; homozygous DTS-2 females expressed a maternal effect on embryonic viability. Two of the mutant-bearing chromosomes, DTS-1 and DTS-6, exhibited dominant phenotypes similar to those associated with Minutes. Each of the seven mutants examined exhibited a characteristic phenotype with respect to the time of death at 29 degrees C and the temperature-sensitive period during development. Only DTS-4 exhibited dominant lethality in triploid females.  相似文献   

17.
The Isolation of Mms- and Histidine-Sensitive Mutants in NEUROSPORA CRASSA   总被引:3,自引:2,他引:1  
A simple method of replica plating has been used to isolate mutants of Neurospora crassa that have increased sensitivity to methyl methanesulfonate (MMS) and/or to histidine. Twelve mutants with increased sensitivity to MMS and one mutant with increased sensitivity to histidine showed Mendelian segregation of the mutant phenotypes. Three mutants were mapped to loci not previously associated with MMS sensitivity. Two others were allelic to the UV- and MMS-sensitive mutant, mei-3. Survival curves indicate that conidia (mutant or wild-type) survive on much higher concentrations of MMS at 25° than at 37°. In contrast, mycelial growth is more resistant to MMS at 37°. The possibility of qualitatively different repair processes at these two temperatures is discussed.  相似文献   

18.
Mutants of the unicellular, green alga Chlamydomonas reinhardtii were recovered by screening for the absence of photoautotrophic growth at 35°C. Whereas nonconditional mutants required acetate for growth at both 25 and 35°C, the conditional mutants have normal photoautotrophic growth at 25°C. The conditional mutants consisted of two classes: (a) Temperature-sensitive mutants died under all growth conditions at 35°C, but (b) temperature-sensitive, acetate-requiring mutants were capable of heterotrophic growth at 35°C when supplied with acetate in the dark. The majority of mutants within the latter of these two classes had defects in photosynthetic functions. These defects included altered pigmentation, reduced whole-chain electron-transport activity, reduced ribulosebis-phosphate carboxylase activity, or pleiotropic alterations in a number of these photosynthetic components. Both nuclear and chloroplast mutants were identified, and a correlation between light-sensitive and photosynthesis-deficient phenotypes was observed.  相似文献   

19.
20.
We isolated 18 independent recessive cold-sensitive cell-division-cycle (cdc) mutants of Saccharomyces cerevisiae, in nine complementation groups. Terminal phenotypes exhibited include medial nuclear division, cytokinesis, and a previously undescribed terminal phenotype consisting of cells with a single small bud and an undivided nucleus. Four of the cold-sensitive mutants proved to be alleles of CDC11, while the remaining mutants defined at least six new cell-division-cycle genes: CDC44, CDC45, CDC48, CDC49, CDC50 and CDC51.—Spontaneous revertants from cold-sensitivity of four of the medial nuclear division cs cdc mutants were screened for simultaneous acquisition of a temperature-sensitive phenotype. The temperature-sensitive revertants of four different cs cdc mutants carried single new mutations, called Sup/Ts to denote their dual phenotype: suppression of the cold-sensitivity and concomitant conditional lethality at 37°. Many of the Sup/Ts mutations exhibited a cell-division-cycle terminal phenotype at the high temperature, and they defined two new cdc genes (CDC46 and CDC47). Two cold-sensitive medial nuclear division cdc mutants representing two different cdc genes were suppressed by different Sup/Ts alleles of another gene which also bears a medial nuclear division function (CDC46). In addition, the cold-sensitive medial nuclear division cdc mutant csH80 was suppressed by a Sup/Ts mutation yielding an unbudded terminal phenotype with an undivided nucleus at the high temperature. This mutation was an allele of CDC32. These results suggest a pattern of interaction among cdc gene products and indicate that cdc gene proteins might act in the cell cycle as complex specific functional assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号