首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Insect Biochemistry》1990,20(7):709-718
A proteinase was purified from crayfish haemocytes by affinity chromatography on heparin-sepharose and phenyl-sepharose, followed by DEAE-cellulose ion-exchange chromatography. This proteinase could mediate the conversion of prophenoloxidase (proPO) to its active form, phenoloxidase (PO), and its was therefore designated a prophenoloxidase activating enzyme, ppA.The purified ppA had a molecular mass of about 36,000 Da. Since ppA was a proteinase able to cleave chromogenic peptide substrates of trypsin, and serine proteinase inhibitors were strongly inhibitory towards ppA activity, the enzyme appeared to be a serine type proteinase. It exhibited maximal enzyme activity at neutral and slightly alkaline pH, and was sensitive to heat inactivation at 58°C.  相似文献   

2.
A thermostable extracellular β-1,3-glucanase from Chaetomium thermophilum was purified to homogeneity by fractional ammonium sulfate precipitation, Pheny1-Sepharose hydrophobic interaction chromatography, ion exchange chromatography on DEAE-Sepharose and gel filtration on Sephacryl S-100. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 76.3 kDa. The enzyme exhibited optimum catalytic activity at pH 6.0 and 60 °C. It was thermostable at 50 °C, and retained 90% activity after 60 min at 60 °C. The half-life at 65 °C, 70 °C and 80 °C was 55 min, 21.5 min, and 5 min, respectively. The N-terminal amino acid sequence (8 residues) of the enzyme was HWLGDIPH. The HPLC analysis showed that the only enzymatic product formed from laminarin by the purified β-1,3-glucanase was glucose, indicating that the enzyme is an exo-β-1,3-glucanase (EC 3.2.1.58).  相似文献   

3.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatograhies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25, 000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0.

Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37°C for 60 min. The optimum pH was pH 11.5–13.0 at 37°C and the optimum temperature was 70°C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80°C and stability from pH 4–12.5 at 60°C and below 75°C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of Microbiol serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

4.
An alkaline proteinase of Aspergillus sulphureus (Fresenius) Thorn et Church has been purified in good yields from wheat bran culture by fractionation with ammonium sulfate, treatment with acrynol, and DEAE-Sephadex A-50 column chromatography. The crystalline preparation was homogeneous on sedimentation analysis and polyacrylamide gel zone electrophoresis. The molecular weight was calculated to be 23,000 by gel filtration. The amino acid composition of the enzyme was determined. The enzyme did not precipitate with acrynol. Optimum pH for the hydrolysis of casein was 7 to 10 at 35°G for 15 min. Optimum temperature was 50°C at pH 7 for 10 min. The enzyme was highly stable at the range of pH 6 to 11 at 5°C, whereas relatively stable at pH 6 to 7 at 35°C. Metalic salts tested did not affect activity. Chelating agents, sulfhydryl reagents, TPCK, and oxidizing or reducing reagents tested, except iodine, had no effect on the activity. Diisopro-pylfluorophosphate and N-bromosuccinimide almost completely inactivated the proteinase.  相似文献   

5.
A proteinase produced by the human gastrointestinal isolate Lactobacillus rhamnosus strain OXY was identified and characterized. The prtR2 gene coding for proteinase activity was detected in the examined strain. The PCR primers used were constructed on the basis of the sequence of the prtR2 proteinase gene from Lactobacillus rhamnosus GG. The enzyme was purified by fast protein liquid chromatography (FPLC) using CM-Sepharose Fast Flow and Sephacryl S-300 columns. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the enzyme had a relatively low molecular mass of 60 kD. Protease activity was observed at a pH range from 6.5 to 7.5 with optimum k cat/K m values at pH 7.0 and 40°C. Maximum proteolytic activity (59 U mL?1) was achieved after 48 hr of cultivation. The activity of the enzyme was inhibited only by irreversible inhibitors specific for serine proteinases (PMSF and 3,4-dichloro-isocumarine), suggesting that the enzyme was a serine proteinase. Proteinase activity was increased by Ca2+ and Mg2+, and inhibited by Cu2+, Zn2+, Cd2+, and Fe2+.  相似文献   

6.
Alkaline proteinase was purified from Bacillussp. isolated from soil. The pH optimum was 11.5 at 37°C. Calcium divalent cation was effective in stabilizing the enzyme, especially at higher temperatures. The proteolytic activity was inhibited by the specific serine proteinase inhibitor PMSF (phenylmethylsulfonyl fluoride), and ions of Mg, Mn, Pb, Li, Zn, Ag, and Hg. The enzyme was stable in the presence of detergents, such as Triton-X100, Tween-80, SDS (sodium dodecyl sulfate), and EDTA (ethylenediaminetetraacetic acid), at pH 11.5 and 37°C for 30 min. The optimum pH was 11.5 at 37°C, and the optimum temperature was 62°C at pH 11.5.  相似文献   

7.
Some enzymatic properties were examined with the purified alkaline proteinase from Aspergillus candidus. The isoelectric point was determined to be 4.9 by polyacrylamide gel disc electrofocusing. The optimum pH for milk casein was around 11.0 to 11.5 at 30°C. The maximum activity was found at 47°C at pH 7.0 for 10 min. The enzyme was stable between pH 5.0 and 9.0 at 30°C and most stable at pH 6.0 at 50°C. The enzyme activity over 95% remained at 40°C, but was almost completely lost at 60°C for 10 min. Calcium ions protected the enzyme from heat denaturation to some extent. No metal ions examined showed stimulatory effect and Hg2+ ions inhibited the enzyme. The enzyme was also inhibited by potato inhibitor and diisopropylphosphorofluoridate, but not by metal chelating agent or sulfhydryl reagents. A. candidus alkaline proteinase exhibited immunological cross-reacting properties similar to those of alkaline proteinases of A. sojae and A. oryzae.  相似文献   

8.
We purified and characterized a serine proteinase secreted by Acanthamoeba healyi to evaluate it as a possible virulence factor in the pathogenesis of granulomatous amoebic encephalitis (GAE). Ammonium sulfate precipitated culture supernatant of A. healyi OC-3A strain was purified by chromatography on CM-Sepharose, Sephacryl-S200, and Q-2 anion-exchange columns. The purified 33-kDa enzyme had a pH optimum of 8.0 and a temperature optimum of 40 C. Phenylmethylsulfonylfluoride and diisopropyl fluorophosphate, serine proteinase inhibitors, diminished activity of the enzyme to near zero. In addition to types I and IV collagen and fibronectin, the main components of the extracellular matrix, other proteins such as fibrinogen, IgG, IgA, albumin, and hemoglobin were also degraded by the enzyme. The broad substrate specificity of this secreted serine proteinase suggests that it may play an important role in pathogenesis of GAE by A. healyi.  相似文献   

9.
Recent advances in purification technologies for therapeutic molecules have stirred the research consortium. Mixed mode chromatography, having multiple interactions with the solute molecule, has drawn significant attention due to its overall advantage over traditional ion-exchange and reverse-phase chromatography. Capto adhere, a mixed mode chromatography resin with strong anion-exchange and reverse-phase interaction with solutes, was explored for purification of fibrinolytic enzyme from Bacillus sphaericus MTCC 3672. Static and dynamic resin binding study revealed that 30°C temperature, pH 8, and 0.5 mL/min flow rate were optimum for maximum binding of fibrinolytic enzyme. Maximum static dynamic binding and breakthrough capacities for Capto adhere were 249 and 196 U/mL of resin, respectively. Final purification with Sephadex G 100 gel chromatography resulted in 38-fold purity of fibrinolytic enzyme with 39% enzyme recovery. Purified enzyme was further characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis to homogeneity, and molecular mass was found to be around 55–70 kD. Like most of the serine alkaline proteases, purified fibrinolytic enzyme was stable in a temperature range of 25–40°C and pH range of 7–9. Offshoots of our research findings have revealed a broad application area of mixed mode chromatography.  相似文献   

10.
Extracellular pullulanase was purified and crystallized from the culture fluid of Aerobacter aerogenes. Pullulanase was purified by means of ammonium sulfate fraction, DEAE-cellulose column chromatography and Sephadex column chromatography. Crystalline pullulanase was formed when saturated ammonium sulfate solution was added to the purified enzyme solution. The crystalline enzyme appeared as colorless fine rods. On ultracentrifugation analysis, the enzyme showed a single sharp and symmetrical Schlieren peak. The sedimentation coefficient, s20,w was 4.39S. Polyacrylamide gel electrophoresis at pH 8.4 gave a main band with two sub-bands and the molecular weight of the main enzyme was estimated to be 66,000 from Polyacrylamide gel electrophoresis and to be 58,000 from sedimentation equilibrium. The optimum pH and temperature for the enzyme action were pH 6.5 and 50°C, respectively.  相似文献   

11.
The high-molar mass from of β-glucosidase fromAspergillus niger strain NIAB280 was purified to homogeneity with a 46-fold increase in purification by a combination of ammonium sulfate precipitation, hydrophobic interaction, ion-exchange and gel-filtration chromatography. The native and subunit molar mass was 330 and 110 kDa, respectively. The pH and temperature optima were 4.6–5.3 and 70°C, respectively. TheK m andk cat for 4-nitrophenyl β-d-glucopyranoside at 40°C and pH 5 were 1.11 mmol/L and 4000/min, respectively. The enzyme was activated by low and inhibited by high concentrations of NaCl. Ammonium sulfate inhibited the enzyme. Thermolysin periodically inhibited and activated the enzyme during the course of reaction and after 150 min of proteinase treatment only 10% activity was lost with concomitant degradation of the enzyme into ten low-molar-mass active bands. When subjected to 0–9 mol/L transverse urea-gradient-PAGE for 105 min at 12°C, the nonpurified β-glucosidase showed two major bands which denatured at 4 and 8 mol/L urea, respectively, with half-lives of 73 min.  相似文献   

12.
A serine protease was purified 6.9-fold from the leaves of Thespesia populnea using ammonium sulfate fractionation followed by CM-cellulose and Sephadex G-100 chromatography. The purified enzyme was named populnein and was characterized. It was made up of a single polypeptide, and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) analysis showed that the enzyme had a molecular mass of 14,518 Da. Inhibition of enzyme activity by phenyl methane sulfonyl fluoride indicates that populnein belongs to the class of serine proteases. The enzyme had appreciable pH and temperature stability. The activity of the enzyme was optimal at pH 8.0 and temperature 40°C. The enzyme was thermostable and retained 85% of its activity at 70°C after 1 hr. The enzyme was also resistant to autodigestion. The stabilization of the membrane of red blood cells exhibited by the protease populnein was found to be higher than for diclofenac. More studies are necessary to investigate the biological activity and applications of serine protease of T. populnea. Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.  相似文献   

13.
In order to reduce the protein content of wastewater, photosynthetic bacteria producing proteinases were screened from wastewater of various sources and stocked in culture. An isolated strain, KDDS1, was identified as Rubrivivax gelatinosus, a purple nonsulfur bacterium that secretes proteinase under micro-aerobic conditions under light at 35°C. Molecular weight of the purified enzyme was estimated to be 32.5 kDa. The enzyme showed the highest activity at 45°C and pH 9.6, and the activity was completely inhibited by phenylmethyl sulfonyl fluoride (PMSF), but not by EDTA. The amino-terminal 24 amino acid sequence of the enzyme showed about 50% identity to those of serine proteinases from Pseudoalteromonas piscicida strain O-7 and Burkholderia pseudomallei. Thus, the enzyme from Rvi. gelatinosus KDDS1 was thought to be a serine-type proteinase. This was the first serine proteinase characterized from photosynthetic bacteria.  相似文献   

14.
A leaf protease of tobacco whose activity was enhanced during curing was purified about 60 times with ammonium sulfate fractionation, ethanol precipitation, calcium phosphate gel treatment and Sephadex G-200 column chromatography, and some properties of the protease were examined. The purified enzyme showed the optimum pH at 5.5 and the optimum temperature at 60°C. The protease activity was stable between pH 4.5 and 5.5 at 50°G or at pH 5.5 below 40°C for 1 hr, but completely destroyed at 70°C during 1 hr. The protease activity was greatly activated by reducing agents such as cysteine, glutathione or mercaptoethanol and inhibited by p-chloromercuribenzoate, phenyl- mercuric acetate or silver ions. Metal ions except for silver ion and ethylenediamine tetraacetic acid did not affect the protease activity so far examined.  相似文献   

15.
An alkaline proteinase of Aspergillus sydowi (Bainier et Sartory) Thom et Church has been purified approximately 4.5-fold from a culture filtrate by fractionation with ammonium sulfate, treatment with acrynol and Alumina gel Cγ, and DEAE-Sephadex column chromatography. The purified proteinase obtained as needle crystals was monodisperse in both the ultracentrifuge and the electrophoresis on polyacrylamide gel.

The optimum pH and temperature for the activity were 8.0 and 40°C, respectively. Fifty per cent of the activity was lost at 45°C within ten minutes and 95% at 50°C. At 5°C, the enzyme was highly stable at the range of pH 6 to 9. None of metallic salts tested promoted the activity, but Zn++, Ni++ and Hg++ were found to be inhibitory. Sulfhydryl reagent, reducing and oxidizing reagents tested except iodine had no effect on the activity, but potato inhibitor, DFP and NBS caused a marked inhibition.

The alkaline proteinase from Aspergillus sydowi was markedly protected from inactivation by the presence of Ca++ in the enzyme solution. The protective effect of Ca++ was influenced remarkably by the pH values of the enzyme solution, i.e., optimum concentrations of Ca++ for the protective effect at pH 7.1, 7.5 and 7.8 were 10?2, 10?3 and 10?4 M, respectively. Conversely, at higher pH values such as 9.0, Ca++ accelerated the rate of inactivation. There was a parallelism between the loss in activity and the increase in ninhydrin-positive material in the enzyme solution.

The proteinase acted on various denaturated proteins, but not on native proteins. In digestion of casein by the proteinase, 92% of nitrogen was turned into soluble form in 0.2 m trichloroacetic acid solution, with 14~17% of peptide bonds being hydrolyzed. Casein hydrolyzed with the Asp. sydowi proteinase was further hydrolyzed by Pen. chrysogenum, B. subtilis or St. griseus proteinases, which further increased the free amino residues in the reaction mixtures. On the contrary, the Asp. sydowi proteinase reacted only slightly on casein hydrolyzed by the above-mentioned proteinases.  相似文献   

16.
Tannin acyl hydrolase (Tannase) from Asp. oryzae No. 7 was purified. The purified enzyme was homogenous on column chromatography (DEAE-Sephadex A50, Sephadex G100), ultra centrifugation and electrophoresis.

The molecular weight of the enzyme estimated by gel filtration method was about 200,000.

The enzyme was stable in the range of pH 3 to 7.5 for 12 hr at 5°C, and for 25 hr at the same temperature in the range of pH 4.5 to 6. The optimum pH for the reaction was 5.5. It was stable under 30°C (over one day, in 0.05 M-citrate buffer of pH 5.5), and the optimum temperature was 30~40°C (reaction for 20min). The activity was lost completely at 55°C in 20 min at pH 5.5, or at 85°C in 10 min at the same pH.

Any metal salt tested did not activate the enzyme, Zink chloride and cupric chloride inhibited the activity or denatured the enzyme. The activity was lost completely by dialysis against EDTA-solution at pH 7.25, although it was not affected by dialysis against deionized water.  相似文献   

17.
Proteinase secreted in the environment by bacilli on different growth stages was isolated by ion chromatography from the culture medium of Bacillus pumilus KMM 62. According to the hydrolysis character of specific chromogenic substrates and inhibition type, the enzyme belongs to subtilisin-like serine proteinases. The isolated proteinase with the molecular mass of 30 kDa displays maximum activity on hydrolysis of the peptide substrate Z-Ala-Ala-Leu-pNA at pH 8.0–8.5 and temperature 30°C. The protein is stable in the range of pH 7.5–10.0. It was shown that subtilisin-like serine proteinase from B. pumilus KMM 62 possessed thrombolytic activity.  相似文献   

18.
The novel fungus Aspergillus niveus RS2 isolated from rice straw showed relatively high xylanase production after 5 days of fermentation. Of the different xylan-containing agricultural by-products tested, rice husk was the best substrate; however, maximum xylanase production occurred when the organism was cultured on purified xylan. Yeast extract was found to be the best nitrogen source for xylanase production, followed by ammonium sulfate and peptone. The optimum pH for maximum enzyme production was 8 (18.2 U/ml); however, an appreciable level of activity was obtained at pH 7 (10.9 U/ml). Temperature and pH optima for xylanase were 50°C and 7.0, respectively; however the enzyme retained considerably high activity under high temperature (12.1 U/ml at 60°C) and high alkaline conditions (17.2 U/ml at pH 8 and 13.9 U/ml at pH 9). The enzyme was strongly inhibited by Hg2+, while Mn2+ was slight activator. The half-life of the enzyme was 48 min at 50°C. The enzyme was purified by 5.08-fold using carboxymethyl-sephadex chromatography. Zymogram analysis suggested the presence of a single candidate xylanase in the purified preparation. SDS-PAGE revealed a molecular weight of approximately 22.5 kDa. The enzyme had K m and V max values of 2.5 and 26 μmol/mg per minute, respectively.  相似文献   

19.
Carboxylesterases are hydrolases which catalyze the hydrolysis of various types of esters. Carboxylesterase from the seeds of Jatropha curcas has been purified to homogeneity using ammonium sulfate fractionation, CM-cellulose chromatography, Sephadex G-100 chromatography and preparative polyacrylamide gel electrophoresis (PAGE). The homogeneity of the purified enzyme was confirmed by PAGE, iso-electrofocusing and SDS-PAGE. The molecular weight of the purified enzyme was determined by both gel-permeation chromatography on Sephadex G-150 and SDS-PAGE. The molecular weight determined by Sephadex G-150 chromatography and SDS-PAGE both in the presence and absence of 2-mercaptoethanol was 31 kDa. The isoelectric point of the purified enzyme was found to be 8.9. JCSE-I (J. curcas seed esterase-I) was classified as carboxylesterase on the basis of substrate and inhibitor specificity. The Km of JCSE-I with 1-naphthyl acetate, 1-naphthyl propionate, 1-naphthyl butyrate and 2-naphthyl acetate as substrates were found to be 0.0,794, 0.0,658, 0.0,567 and 0.1 mM, respectively. The enzyme exhibited an optimum temperature of 45 °C and an optimum pH of 6.5. The enzyme was stable up to 15 min at 65 °C. The enzyme was resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB) and inhibited by organophosphates (dichlorvos, parathion and phosphamidon).  相似文献   

20.
Aspergillus flavus produced approximately 50 U/mL of amylolytic activity when grown in liquid medium with raw low-grade tapioca starch as substrate. Electrophoretic analysis of the culture filtrate showed the presence of only one amylolytic enzyme, identified as an α-amylase as evidenced by (i) rapid loss of color in iodine-stained starch and (ii) production of a mixture of glucose, maltose, maltotriose and maltotetraose as starch digestion products. The enzyme was purified by ammonium sulfate precipitation and ion-exchange chromatography and was found to be homogeneous on sodium dodecyl sulfate— polyacrylamide gel electrophoresis. The purified enzyme had a molar mass of 52.5±2.5 kDa with an isoelectric point at pH 3.5. The enzyme was found to have maximum activity at pH 6.0 and was stable in a pH range from 5.0 to 8.5. The optimum temperature for the enzyme was 55°C and it was stable for 1 h up to 50°C. TheK m andV for gelatinized tapioca starch were 0.5 g/L and 108.67 μmol reducing sugars per mg protein per min, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号