首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that type I procollagen pro-alpha1(I) chains from an osteogenesis imperfecta patient (OI26) with a frameshift mutation resulting in a truncated C-propeptide, have impaired assembly, and are degraded by an endoplasmic reticulum-associated pathway (Lamandé, S. R., Chessler, S. D., Golub, S. B., Byers, P. H., Chan, D., Cole, W. G., Sillence, D. O. and Bateman, J. F. (1995) J. Biol. Chem. 270, 8642-8649). To further explore the degradation of procollagen chains with mutant C-propeptides, mouse Mov13 cells, which produce no endogenous pro-alpha1(I), were stably transfected with a pro-alpha1(I) expression construct containing a frameshift mutation that predicts the synthesis of a protein 85 residues longer than normal. Despite high levels of mutant mRNA in transfected Mov13 cells, only minute amounts of mutant pro-alpha1(I) could be detected indicating that the majority of the mutant pro-alpha1(I) chains synthesized are targeted for rapid intracellular degradation. Degradation was not prevented by brefeldin A, monensin, or NH(4)Cl, agents that interfere with intracellular transport or lysosomal function. However, mutant pro-alpha1(I) chains in both transfected Mov13 cells and OI26 cells were protected from proteolysis by specific proteasome inhibitors. Together these data demonstrate for the first time that procollagen chains containing C-propeptide mutations that impair assembly are degraded by the cytoplasmic proteasome complex, and that the previously identified endoplasmic reticulum-associated degradation of mutant pro-alpha1(I) in OI26 is mediated by proteasomes.  相似文献   

2.
We have introduced two mutations into a full-length human pro-alpha 1(I) cDNA that delete 114 amino acids or the entire 139 amino acids of the N-propeptide domain. Wild-type and mutated versions of the cDNA were introduced into cultured Chinese hamster lung (CHL) cells, which do not produce endogenous type I collagen, and into Mov-13 mouse cells, which produce endogenous pro-alpha 2(I) chains but not pro-alpha 1(I) chains. As judged by resistance to proteases, neither mutation impaired intracellular triple helical assembly of human alpha 1(I) homotrimers in CHL cells, or of chimeric type I collagen comprised of human alpha 1(I) and mouse alpha 2(I) chains in Mov-13 cells. Thus, the N-propeptide is not necessary for intracellular assembly of the main helical collagen domain of type I collagen. In CHL cells the rate of secretion of the mutant homotrimers was greatly reduced as compared to wild type homotrimers, and by immunofluorescence and immunoelectron microscopy, the mutant chains were shown to be accumulated in large vesicular expansions of the rough endoplasmic reticulum. When such cells were retransfected with cDNA encoding wild-type human alpha 2(I) chains, mutant alpha 1(I) chains were not rescued and heterotrimers containing the mutant chains were also retained in the intracellular vesicles. By contrast, deletion of the N-propeptide did not affect secretion of heterotrimers containing mutant chains from Mov-13 cells. Thus, an intact N-propeptide appears necessary for efficient secretion of type I collagen from some but not all cell types.  相似文献   

3.
Immunofluorescence and immunoelectron microscopy were used in conjunction with a monoclonal antibody to investigate the localization of type X collagen in the proximal tibial growth plate of 7-d-old chicks. This molecule was detected throughout the hypertrophic zone first appearing when chondrocytes exhibited hypertrophy: it was absent from the proliferative zone. Type X collagen was primarily associated with type II collagen fibrils as demonstrated by immunogold staining. Type X collagen was not concentrated in the focal calcification sites nor was it associated with matrix vesicles. These observations suggest that type X collagen may play a role other than that directly related to the nucleation of calcification.  相似文献   

4.
The Disproportionate micromelia (Dmm) mouse has a three nucleotide deletion in Col2a1 in the region encoding the C-propeptide which results in the substitution of one amino acid, Asn, for two amino acids, Lys-Thr. Western blot and immunohistochemical analyses failed to detect type II collagen in the cartilage matrix of the homozygous mice and showed reduced levels in the matrix of heterozygous mice. Type II collagen chains localized intracellularly within the chondrocytes of homozygote and heterozygote tissues. These findings provide evidence that the expression of type II procollagen chains containing the defective C-propeptide results in an intracellular retention and faulty secretion of type II procollagen molecules. A complete absence of mature type II collagen from the homozygote cartilage and an insufficiency of type II collagen in the heterozygote cartilage explains the Dmm mouse phenotype. The integrity of the C-propeptide is thus crucial for the biosynthesis of normal type II collagen by chondrocytes.  相似文献   

5.
We have shown that when chondrocytes are isolated by collagenase digestion of hyaline cartilage from growth plate, nasal, and epiphyseal cartilages of bovine fetuses they rapidly elaborate an extracellular matrix in culture. Only growth plate chondrocytes can calcify this matrix as ascertained by incorporation of 45Ca2+, detection of mineral with von Kossa's stain and electron microscopy. There is an extremely close direct correlation between 45Ca2+ incorporation in the first 24 h of culture and the content of the C-propeptide of type II collagen, measured by radioimmunoassay, at the time of isolation and during culture. Moreover, growth plate cells have an increased intracellular content of the C-propeptide per deoxyribonucleic acid and, during culture, per hydroxyproline (as a measure of helical collagen) compared with nasal and epiphyseal chondrocytes. In growth plate chondrocytes 24,25-dihydroxycholecalciferol (24,25-[OH]2D3), but not 1,25-dihydroxycholecalciferol alone, stimulates the net synthesis of the C-propeptide and calcification; proteoglycan net synthesis is unaffected. Together, these metabolites of vitamin D further stimulate C-propeptide net synthesis but do not further increase calcification stimulated by 24,25-(OH)2D3. These observations further demonstrate the close correlation between the C-propeptide of type II collagen and the calcification of cartilage matrix.  相似文献   

6.
Three possible mechanisms are considered to account for the variations of post-translational modifications in different collagen types. 1) The cells have different amounts of post-translational modifying enzymes, 2) the rate of prolylhydroxylation of different procollagen types is varied, and 3) the rate of chain association of pro-alpha chains of different collagen types is modulated. In an attempt to examine the three possibilities, we have determined the activities of prolyl hydroxylase and lysyl hydroxylase, and we have examined the kinetics of the secretion of procollagens and the kinetics of pro-gamma chain formation of different procollagen types in matrix-free cells isolated from tissues of 17-day-old chick embryos. Type II collagen synthesized by cartilage cells contains more hydroxylysine than type I collagen synthesized by tendon and cornea cells. It was found, however, that cartilage cells contain significantly less lysyl hydroxylase than tendon and cornea cells. In contrast, we found only a small difference in the amount of prolyl hydroxylase in tendon, cornea, and cartilage cells. The secretion of type I procollagen by tendon and cornea cells can be described by two first order processes. In contrast, the secretion of type II procollagen by cartilage cells, type IV procollagen by lens cells, and type V procollagen by cornea cells can be described by single first order processes. Examination of the formation of pro-gamma components of procollagen types I and II revealed that it occurs via intermediate dimers of two pro-alpha chains. The formation or pro-gamma(I) chains in tendon and cornea cells is about three times faster than the formation of pro-gamma(II) chains in cartilage cells. These results are consistent with the hypothesis that the rate of association of pro-alpha chains regulates the synthesis of procollagens with different degrees of post-translational modifications.  相似文献   

7.
1. The molecular weights of chick tendon and cartilage procollagens, and their constituent polypeptides, were determined by gel filtration and gel electrophoresis. The values obtained are in good agreement and indicate that the mol.wts. of the secreted procollagens (types I and II) and their individual pro-alpha-chains are of the order of 405 000-445 000 and 137 000-145 000 respectively.2. Digestion of tendon procollagen with human rheumatoid synovial collagenase gave products consistent with the presence of large non-helical peptide extensions at both N-and C-termini. Electrophoretic analysis gave apparent mol.wts. of 17 500 and 36 000 for the respective N- and C-terminal extensions of pro-alpha1(I)-and pro-alpha2-chains, and inter-chain disulphide bonds were restricted to the C-terminal location. 3. During the biosynthesis of procollagen by tendon and cartilage cells a close correlation was observed between the extent of inter-chain disulphide bonding and the proportion of procollagen polypeptides having a triple-helical conformation. These processes appeared to commence in the rough endoplasmic reticulum and be completed in the smooth endoplasmic reticulum, but the rate at which they occur in cartilage cells is markedly slower than that found in tendon cells. 4. When the intracellular [14C]procollagen polypeptides present in the rough-endoplasmic-reticulum fractions of tendon and cartilage cells were analysed under non-reducing conditions on agarose/polyacrylamide composite gels, no significant pools of dimeric intermediates were detected. 5. In both cell types, inter-chain disulphide-bond formation occurred even when hydroxylation, and hence triple-helix formation, was inhibited. The presence of pro-alpha1- and pro-alpha2-components in a ratio of 2:1 in the disulphide-linked unhydroxylated procollagen isolated from tendon cells demonstrated that correct chain association occurs in the absence of hydroxylation. This observation is consistent with a model for the assembly of pro-gamma112-chains in which the recognition and selection of pro-alpha1-and pro-alpha2-chains in a 2:1 ratio are directed by the non-helical C-terminal extension peptides of tendon procollagen.  相似文献   

8.
The primary structure of the cartilage matrix molecule chondrocalcin has been found to be identical with that of the C-propeptide of type II procollagen by comparing sequence analyses of the N-terminal regions and of tryptic peptides derived from chondrocalcin. This implies that in type II collagen the C-propeptide of type II collagen is employed not only in the assembly of the triple helix of type II collagen, as demonstrated previously, but in calcifying cartilage it may also be involved in those events leading to cartilage calcification, as earlier indicated.  相似文献   

9.
We characterized a de novo 4.5 kilobase pair deletion in the paternally derived alpha 2(I) collagen allele (COL1A2) from a patient with perinatal lethal osteogenesis imperfecta. The intron-to-intron deletion removed the seven exons which encode residues 586-765 of the triple helical domain of the chain. Type I procollagen molecules that contain the mutant pro-alpha 2(I) chain have a lower than normal thermal stability, undergo increased post-translational modification amino-terminal to the deletion junction, and are retained within the rough endoplasmic reticulum. The block to secretion appears to result from improper assembly of the triple helix, apparently a consequence of a disruption of charge-charge interactions between the shortened pro-alpha 2(I) chain and normal pro-alpha 1(I) chains. The lethal effect may be due to decreased secretion of normal collagen and secretion of a small amount of abnormal collagen that disrupts matrix formation.  相似文献   

10.
1. Isolation of free and membrane-bound ribosomes from embryonic chick sternal-cartilage cells labelled for 4min with [14C]proline and their subsequent analysis for hydroxy[14C]proline indicated that cartilage procollagen biosynthesis occurs on bound ribosomes. 2. Nascent procollagen polypeptides on bound ribosomes isolated from cells labelled with [14C]lysine were found to contain hydroxy[14C]lysine indicating that hydroxylation of lysine commences while the growing chains are still attached to the ribosomes. 3. Analysis of bound ribosomes labelled with either [14C]proline or [14C]lysine on sucrose density gradients indicated that cartilage procollagen is synthesized on large polyribosomes in the range 250-400S. 4. Microsomal preparations isolated from cells pulse-labelled for 4 min with [14C]proline were used to determine the direction of release of nascent procollagen polypeptides. Puromycin induced the vectorial release of nascent procollagen polypeptides into the microsomal vesicles suggesting that the first step in the secretion of procollagen polypeptides is their transfer from the ribosomes through the membrane of the endoplasmic reticulum into the cisternal space. 5. The procollagen polypeptides secreted by cartilage cells were shown to be linked by inter-chain disulphide bonds. 6. Examination of the state of aggregation of pro-alpha chains in subcellular fractions isolated from cartilage cells labelled with [14C]proline for various periods of time have provided data on the timing and location of inter-chain disulphide-bond formation. This process commences in the rough endoplasmic reticulum after the release of completed pro-alpha chains from membrane-bound ribosomes. Pro-alpha chains isolated from fractions of smooth endoplasmic reticulum were virtually all present as disulphide-bonded aggregates, suggesting that either disulphide bonding is completed in this cellular compartment, or that procollagen needs to be in a disulphide-bonded form to be transferred to this region of the endoplasmic reticulum. 7. Comparison of these results with previously published data on disulphide bonding in tendon cells suggest that the rate of inter-chain disulphide-bond formation is significantly slower in cartilage cells.  相似文献   

11.
The monovalent ionophore monensin inhibits the secretion of both procollagen and fibronectin from human fibroblasts in culture. The distribution of these proteins in control and inhibited (5 x 10(-7) M monensin) cells has been studied by immunofluorescence microscopy. In control cells, both antigens are present throughout the cytoplasm and in specific deposits in a region adjacent to the nucleus, which we identify as a Golgi zone by electron microscopy. Treatment of cells with monensin causes intracellular accumulation of procollagen and fibronectin, initially in the juxta-nuclear region and also subsequently in peripheral regions. Electron microscope studies reveal that in such cells the juxta-nuclear Golgi zone becomes filled with a new population of smooth-membraned vacuoles and that normal Golgi complexes are not found. Immunocytochemically detected procollagen and fibronectin are localized in the region of these vacuoles, whereas more peripheral deposits correspond to the dilated cisternae of rough endoplasmic reticulum, which are also caused by monensin. Procollagen and fibronectin are often codistributed in these peripheral deposits. Accumulation of exportable proteins in Golgi-related vacuoles is consistent with previous analyses of the monensin effect. The subsequent development of dilated rough endoplasmic reticulum also containing accumulated proteins may indicate that there is an additional blockade at the exit from the endoplasmic reticulum, or that the synthesized proteins exceed the capacity of the Golgi compartment and that their accumulation extends into the endoplasmic reticulum.  相似文献   

12.
Folding of carboxyl domain and assembly of procollagen I   总被引:3,自引:0,他引:3  
An early form of procollagen I was found in acetic acid extracts of radioactively labeled chick embryo skull bones. It resembled native procollagen I, but sedimented slightly faster, and its component chains were slightly underhydroxylated and were not disulfide-linked to each other, although its propeptides were internally disulfide-bonded. Pulse-chase experiments showed its conversion to disulfide-linked procollagen. As the same conversion occurred when proline hydroxylation was blocked by 2,2'-dipyridyl, we infer that the formation of this precursor from its component chains does not require collagen triple helix formation. We suggest that interaction between the folded carboxyl propeptides of individual pro-alpha (I) chains is an important step in the formation of this precursor and of procollagen I. Studies of the refolding and association of fully reduced and denatured carboxyl propeptides supported this concept. In the presence of glutathione the correct disulfide bonds could be reestablished, as judged by a mapping of some tryptic peptides. Individual carboxyl propeptides refolded first, and this occurred even in 2 M urea. Recognition between folded carboxyl propeptides occurred only when less than 0.5 M urea was present. The presence of the carboxyl telopeptides was important for trimeric reassembly. Individual propeptides also folded spontaneously during cell-free translation of pro-alpha (I) chains and were recognized by specific antibodies. We consider the role of carboxyl propeptides in the formation of procollagen I molecules and suggest a model of self-assembly, possibly facilitated by interactions with the luminal surface of the rough endoplasmic reticulum.  相似文献   

13.
Mutations in the type I procollagen C-propeptide occur in ~6.5% of Osteogenesis Imperfecta (OI) patients. They are of special interest because this region of procollagen is involved in α chain selection and folding, but is processed prior to fibril assembly and is absent in mature collagen fibrils in tissue. We investigated the consequences of seven COL1A1 C-propeptide mutations for collagen biochemistry in comparison to three probands with classical glycine substitutions in the collagen helix near the C-propeptide and a normal control. Procollagens with C-propeptide defects showed the expected delayed chain incorporation, slow folding and overmodification. Immunofluorescence microscopy indicated that procollagen with C-propeptide defects was mislocalized to the ER lumen, in contrast to the ER membrane localization of normal procollagen and procollagen with helical substitutions. Notably, pericellular processing of procollagen with C-propeptide mutations was defective, with accumulation of pC-collagen and/or reduced production of mature collagen. In vitro cleavage assays with BMP-1 ± PCPE-1 confirmed impaired C-propeptide processing of procollagens containing mutant proα1(I) chains. Overmodified collagens were incorporated into the matrix in culture. Dermal fibrils showed alterations in average diameter and diameter variability and bone fibrils were disorganized. Altered ER-localization and reduced pericellular processing of defective C-propeptides are expected to contribute to abnormal osteoblast differentiation and matrix function, respectively.  相似文献   

14.
Procollagen assembly occurs within the endoplasmic reticulum, where the C-propeptide domains of three polypeptide alpha-chains fold individually, and then interact and trimerise to initiate folding of the triple helical region. This highly complex folding and assembly pathway requires the co-ordinated action of a large number of endoplasmic reticulum-resident enzymes and molecular chaperones. Disease-causing mutations in the procollagens disturb folding and assembly and lead to prolonged interactions with molecular chaperones, retention in the endoplasmic reticulum, and intracellular degradation. This review focuses predominantly on prolyl 1-hydroxylase, an essential collagen modifying enzyme, and HSP47, a collagen-specific binding protein, and their proposed roles as molecular chaperones involved in fibrillar procollagen folding and assembly, quality control, and secretion.  相似文献   

15.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

16.
A 32-wk-gestation female with type II achondrogenesis-hypochondrogenesis has been studied. The clinical features were typical, and radiographs revealed short ribs, hypoplastic ilia, absence of ossification of sacrum, pubis, ischia, tali, calcanei, and many vertebral bodies; the long bones were short with mild metaphyseal flaring. The femoral cylinder index was 6.3. Comparison with previous cases placed the patient toward the mild end of the achondrogenesis-hypochondrogenesis spectrum (Whitley-Gorlin prototype IV). Light microscopy revealed hypercellular cartilage with decreased matrix traversed by numerous fibrous vascular canals. The growth plate was markedly abnormal. Ultrastructural studies revealed prominently dilated rough endoplasmic reticulum containing a fine granular material with occasional fibrils in all chondrocytes. Immunohistologic studies indicated irregular large areas of cartilage matrix staining with monoclonal antibody to human type III collagen. The relative intensity of matrix staining for type II collagen appeared diminished. More striking, however, were intense focal accumulations of type II collagen within small rounded perinuclear structures of most chondrocytes but not other cell types. These results strongly suggest intracellular retention of type II collagen within vacuolar structures, probably within the dilated rough endoplasmic reticulum observed in all chondrocytes by electron microscopy (EM), and imply the presence of an abnormal, poorly secreted type II collagen molecule. Biochemical studies (see companion paper) suggest that this patient had a new dominant lethal disorder caused by a structural abnormality of type II collagen.  相似文献   

17.
We have isolated a cDNA clone (pRcol 2) which is complementary to the 5'-terminal portion of the rat pro-alpha 1(II) chain mRNA. A synthetic oligonucleotide was used both as a primer for cDNA synthesis and as a probe for screening a cDNA library. The probe was a mixture of sixteen 14-mers deduced from an amino acid sequence present in the amino-terminal telopeptide of the rat cartilage alpha 1(II) chain. This primer was chosen so that the resulting cDNA would contain the sequence of the 5' end of the mRNA. The nucleotide sequences of the cDNA were determined and compared with that of three other interstitial procollagen chain mRNAs (pro-alpha 1(I), pro-alpha 2(I), and pro-alpha 1(III) chain mRNA). pRcol 2 contains a 521-base pair (bp) insert, including 153 bp of the 5' untranslated region plus 368 bp coding for the signal peptide, the amino-terminal propeptide, and a part of the telopeptide. The signal peptide of the type II collagen chain is composed of about 20 amino acids. There is little homology between the amino acid sequence of the signal peptide in the pro-alpha 1(II) chain and that of three other interstitial procollagen chains. The NH2-terminal propeptide is deduced to contain short nonhelical sequences at its amino and carboxyl ends and an internal helical collagenous domain comprising 25 repeats of Gly-X-Y with one interruption. There is a strong conservation of the amino acid sequence of the carboxyl-terminal part of the NH2-terminal propeptide in the pro-alpha 1(II), pro-alpha 1(I), and pro-alpha 2(I) chains. Type II collagen mRNA does not contain a sequence corresponding to a uniquely conserved nucleotide sequence around the translation initiation site which occurs in mRNA for other procollagen chains.  相似文献   

18.
Quality control within the endoplasmic reticulum (ER) is thought to be mediated by the interaction of a folding protein with one or several resident ER proteins [1]. Protein disulphide isomerase (PDI) is one such ER resident protein that has been previously shown to interact with proteins during their folding and assembly pathways [2, 3]. It has been assumed that, as a consequence of this interaction, unassembled proteins are retained within the ER. Here, we experimentally show that this is indeed the case. We have taken advantage of our previous finding that PDI interacts with procollagen chains early on in their assembly pathway [2] to address the role of this protein in directly retaining unassembled chains within the ER. Our experimental approach involved expressing individual C-propeptide domains from different procollagen chains in mammalian cells and determining the ability of these domains to interact with PDI and to be secreted. The C-propeptide from the proalpha2(I) chain was retained within the cell, where it formed a complex with PDI. Conversely, the C-propeptide from the proalpha1(III) chain did not form a complex with PDI and was secreted. Both domains were secreted, however, from a stable cell line expressing a secreted form of PDI lacking its ER retrieval signal. Hence, we have demonstrated directly that the intracellular retention of one substrate for ER quality control is due to an interaction with PDI.  相似文献   

19.
20.
The collagen phenotype of a 4-nitroquinoline-1-oxide-transformed line of Syrian hamster embryo fibroblasts, NQT-SHE, was markedly altered from that of normal Syrian hamster embryo cells, which synthesized mainly type I procollagen [pro-alpha 1(I)]2 pro-alpha 2(I). Total collagen synthesis in the transformant was reduced to about 30% of the control level primarily because synthesis of the pro-alpha 1(I) subunit was completely suppressed. The major collagenous products synthesized consisted of two polypeptides, designated as N-33 and N-50, which could be completely separated by precipitation with ammonium sulfate at 33 and 50% saturation, respectively. N-33 migrated similarly to pro-alpha 2(I) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-50 migrated slightly more slowly. The collagenous regions of these chains were more sensitive to protease than the analogous region of procollagen I, but alpha-chains could be obtained by digestion for 2 h at 4 degrees C with high ratios of protein:pepsin. Staphylococcus V8 protease and cyanogen bromide peptide maps of N-33 alpha and N-50 alpha chains indicated that the chains were homologous with, but different than, alpha 2(I) chains and that they differed from each other. Considering their similarity to pro-alpha 2(I), it was surprising to find that the N-collagens were secreted to the same extent as was type I procollagen from Syrian hamster embryo cells and that there were no disulfide bonds between N-collagen chains. Intrachain disulfides were present. One possible explanation for the unusual collagen phenotype of NQT-SHE cells is that transformation induced one or more mutations in the pro-alpha 2(I) structural gene while suppression of synthesis of the pro-alpha 1(I) subunit may be due to a mutation in the regulatory region of its gene or in a general regulatory gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号