首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between vegetation and environmental variables has been studied in 100 sample plots, each 0.25 m2, in old-growth spruce forest at Høgkollen, ØOstmarka Nature Reserve, SE Norway. Each sample plot was supplied with measurements of 13 environmental and 5 biotic variables. Parallel application of three ordination techniques, PCA, DCA and LNMDS, resulted in different sample plot configurations. PCA performed poorest due to strong influence of outliers and circumstantial evidence indicated better performance of LNMDS than DCA. Statistical analyses of the relationships between vegetation and ecological data revealed a parallel gradient in soil moisture (decreasing) and canopy closure (increasing) as the most important for differentiation of the vegetation. Species number and field layer cover decreased, while bottom layer cover increased, due to increasing cover of Dicranum majus , with decreasing soil moisture and increasing canopy closure. Constrained canonical correspondence analysis (CCA) was used to partition the variation of the species-sample plot matrix into spatial, environmental and unexplained variation, and combinations. The fraction of unexplained variation was high (80.9 %), most likely due to small sample plot size and short gradient lengths. Most of the explained variation was attributable to environmental factors alone (54.5%). Only 6.3% was shared between environmental and spatial variation, which indicated minor importance of broad-scale and geographically structured environmental variation. Strictly spatial variation constituted 39.3%. However, the spatially structured environmental variation was low, so the causes of spatial variation were likely not to be found among the measured environmental variables.  相似文献   

2.
The vegetation of a poor mire is sampled by two procedures; 800 randomly placed sample plots made up the R data set, 765 subjectively selected plots in 153 sample plot series made up the S data set. DCA ordination and constrained ordination by DCCA of the data sets and subsets showed the existence of three coenoclines in the material: (1) the coenocline along the mire expanse: low to high median depth to the water table—mire margin gradient, (2) the poor-rich coenocline, dependent on a complex-gradient in substrate chemistry, and (3) a coenocline attributed to variation in peat productivity. Thus the assumption of Fennoscandian mire scientists embedded in numerous systems for classifying mire vegetation, that three gradients are the most important in the mire ecosystem, is partly confirmed. In the investigated area, two of the gradients normally considered make up one complex coenocline (1), and a fourth coenocline (3) has to be added. The effects of sampling techniques on correlations between coenoclines and on ordination results are discussed, and an improved sampling technique is suggested. The major faults of DCA: (1) the tongue effect, and (2) the instability, are described and discussed. It is concluded that if due attention is taken to reveal effects of the faults of the method, DCA is among the best ordination methods currently available.  相似文献   

3.
The vegetation in a beech forest, Fritzøehusparken, is analysed using one hundred sample plots, each 25 m2, distributed by a restricted random procedure. Percentage cover and frequency in subplots are used for quantification of species amounts, and their relative performance are evaluated. Advantages of choosing frequency in subplots are discussed. Thirteen environmental variables are measured from each of the sample plots. The vegetation is divided into four topographical/ecological types. This classification served as a reference in the further treatment. Ecological gradients corresponding to the most important vegetational gradients in the beech forest are identified by means of DCA ordination followed by statistical interpretation. Two main complex gradients were recognized; (1) the gradient in nutrient conditions, and (2), the gradient inlitter-wind conditions. The advantages of using DCA and statistical interpretation with integration of ecological measurements are emphasized.  相似文献   

4.
Indirect gradient analysis, which entails the elucidation of relationships between trends in community composition and underlying environmental or successional gradients, is a major objective of ordination in plant ecology. Two ordination techniques, detrended correspondence analysis (DCA) and principal co-ordinates analysis (PCOA), were compared using three sets of Tasmanian vegetation data having known gradients and one set where the vegetation was expected to respond to diverse environmental variables. In every case, the results obtained by DCA were considered superior to, or at least as good as, those of PCOA. Hence, DCA appears to be the more suitable of the two methods for indirect gradient analysis.  相似文献   

5.
Quantitative analysis of ecological relationships between vegetation and the environment has become an essential means in the field of research of modern vegetation ecology. In this article, based on data from 84 quadrates, forest communities in this reserve were investigated using TWINSPAN, DCA and DCCA. The results will be helpful in the construction and development of Pangquangou National Nature Reserve. Using TWINSPAN, the forest communities were classified into seven types. The distribution pattern of vegetation reflects the comprehensive influence of environments. The results of DCA and DCCA clearly reflect the relationship between the pattern of forest communities and environmental gradients. The ordination result of DCCA indicates that altitude is more important than other environmental factors because the change of altitude gradient will lead to changes in the temperature and humidity gradients. The first of the DCA ordination axes indicates the humidity gradient, and the second indicates the temperature gradient. All these results show that the main factors restricting the distribution of communities in this reserve are temperature and humidity. The ecological meaning of the ordination axis in DCCA is much clearer than that in DCA, and the species-environment correlation of DCCA is more obvious than DCA. The first DCCA axis indicates the altitude gradient among the communities, while the second is the gradient in aspect and slope among the communities. DCCA ordination can simultaneously express similarities of species and environment. Therefore, the quadrat location in the DCCA ordination figure is much closer than in the DCA.  相似文献   

6.
Zhang X P  Wang M B  She B  Xiao Y 《农业工程》2006,26(3):754-761
Quantitative analysis of ecological relationships between vegetation and the environment has become an essential means in the field of research of modern vegetation ecology. In this article, based on data from 84 quadrates, forest communities in this reserve were investigated using TWINSPAN, DCA and DCCA. The results will be helpful in the construction and development of Pangquangou National Nature Reserve. Using TWINSPAN, the forest communities were classified into seven types. The distribution pattern of vegetation reflects the comprehensive influence of environments. The results of DCA and DCCA clearly reflect the relationship between the pattern of forest communities and environmental gradients. The ordination result of DCCA indicates that altitude is more important than other environmental factors because the change of altitude gradient will lead to changes in the temperature and humidity gradients. The first of the DCA ordination axes indicates the humidity gradient, and the second indicates the temperature gradient. All these results show that the main factors restricting the distribution of communities in this reserve are temperature and humidity. The ecological meaning of the ordination axis in DCCA is much clearer than that in DCA, and the species-environment correlation of DCCA is more obvious than DCA. The first DCCA axis indicates the altitude gradient among the communities, while the second is the gradient in aspect and slope among the communities. DCCA ordination can simultaneously express similarities of species and environment. Therefore, the quadrat location in the DCCA ordination figure is much closer than in the DCA.  相似文献   

7.
Question: Which are the gradients of floristic differentiation in Greek beech (Fagus sylvatica) forests? Which is the role of geographical and ecological factors in this differentiation? Location: Beech forests of the plant geographical regions Northeast, North Central and East Central Greece. Methods: A total of 1404 published and unpublished phytoso‐ciological relevés were used in the analyses. TWINSPAN and DCA were applied to classify and ordinate the relevés. Altitude, Indicator Values of relevés and their X and Y coordinates were used in a posteriori interpretation of the ordination axes. Kendall's correlation coefficients were calculated between DCA relevé scores and explanatory variables. Multiple linear regression was used to partition the variation explained by the first two DCA axes, between the geographical and the ecological variables. Results: Classification resulted in 14 vegetation units defined by species composition. Two types of gradients, ecological and geographical, were revealed by the DCA of all releves. The partition of the variation accounted for by the first and second DCA axis was attributed mainly to ecological and geographical variables, respectively. Conclusions: Beech forests of northeast and Central Greece show phytogeographical differences, while ecologically similar vegetation units occur in both regions. A west‐east gradient is revealed in Greek beech forest vegetation. The extent of the study area, its position along regional gradients and the comprehensiveness of the data set that is analysed determine the types of the gradients which can be revealed in a vegetation study.  相似文献   

8.
The vegetation of traditionally managed species-rich hay meadows at Sverveli, Telemark, S Norway was studied applying an indirect gradient approach. The vegetation in 93 randomly placed sample plots was analysed in order to detect the main vegetational gradients. Ecological measurements were recorded from each plot. The relationships between vegetation and environment were studied by DCA and LNMDS ordinations and non-parametric correlation analysis. Both ordinations revealed the same two ecologically interpretable vegetation gradients. Soil moisture was identified as the most important environmental factor in determining the species composition, followed by soil nutrient content. The contents of P, K. and Mg in the soil were more strongly correlated with the main vegetational gradients than was soil N. Differences in management history may explain some of the observed variation in species composition that was not accounted for by the recorded environmental variables.  相似文献   

9.
A data set of beech (Fagus sylvatica) forests in the Basque Country (Northern Spain), including biotic (floristic relevés) and environmental data (pH, organic matter, slope, altitude, rock cover), is analyzed in order to describe the relationships between understorey composition and environmental parameters. An ordination technique (DCA) is used to display the floristic gradients, and the interpretation of the floristic space in environmental terms is carried out by a spatial analysis technique (kriging). The composition of the beech forest understorey responds to a complex environmental gradient in the study area. Forests growing on acid substrata differ markedly from those growing on soils with higher pH, as the sharp transition between the pH 5 and 6 isolines reflects. When pH values exceed 6, organic matter content becomes the most important factor explaining the vegetation pattern and the rate of change is greater as organic matter content tends to change at a smaller scale than sample size and, as a consequence many transitional forms are found.  相似文献   

10.
The vegetation within an ombrotrophic mire expanse in SE Norway is studied in detail. Percentage cover of 45 species in 436 sample plots (16 ×16 cm), dispersed on 26 transects, are recorded. In addition, species abundance in 6976 subplots (4×4 cm) are recorded. 14 variables are recorded for each of the sample plots, while only distance to the water-table is estimated for the subplots. Spatial co-ordinates are supplied for all sample- and subplots. DCA ordination of a data-set consisting of 412 sample plots reveals two ecologically interpretable vegetational gradients: the hummock-hollow gradient (DCA 1), and a gradient associated with the peat-production of the bottom layer (DCA 2). Passive DCA of subplots is used to get an impression of within sample plot heterogeneity, and shows that the fine-scale compositional turnover may be considerable. Partitioning of the variation in species abundance data is done by use of (partial) CCA. The fraction of unexplained variation is rather large for all the tested data-sets, but within the total variation explained, both distance to the water-table and spatial structure explain large parts.  相似文献   

11.
Pitkänen  Sari 《Plant Ecology》1997,131(1):109-126
The effect of stand structure on the diversity of the forest's ground vegetation was examined based on data on permanent sample plots collected in the northern parts of North-Carelia, eastern Finland. Different ordination methods (DCA, GNMDS, LNMDS, and HMDS) were used together with the TWINSPAN classification method. The aim was to construct a basis for classifying forests with respect to the biodiversity of the forest vegetation. Fertility and stand age showed the strongest correlation with the variation in ground vegetation. Other important factors were basal area, tree species composition, and crown cover. These variables were important in the division of the sample plots into different classes. According to the diversity indices, species diversity was at its highest in young stands on fertile forest sites. As a result, twenty-one different classes were formed based on the relative abundance of understorey species. The variables with the highest correlation were used to describe the stand structure in these classes.  相似文献   

12.
根据对西藏阿里地区163个植物群落样地资料进行的多元分析——排序、数量分类与环境解释,给出了该地区植被的基本类型、生态梯度及其与环境因子的定量关系。基本分析方法包括3个步骤:1)通过无倾向对应分析(DCA)的两个排序向量揭示了阿里植被的两个主要生态梯度;2)由该梯度的二维散点图及二元指示种分析(TWINSPAN)分别产生非等级制与等级制的植物群落分类系统;3)以多元回归分析将排序值与环境及地理参数相联系而给出各类型的环境指标——定量环境解释。分析表明,阿里植被类型及其分布主要取决于热量与湿度梯度,前者可通过地理参数,后者则通过土壤特征的数学表达式来定量地确定。两梯度包含的类型、种类与生境差异颇大,由低山暖性荒漠直到高山冰缘植被,从隐带性沼泽与盐生草甸到高原地带性荒漠与草原均各得其位,各有其值。表明该数量分析法对于处理高度生态多样性的植物群落生态信息是十分有效的。  相似文献   

13.
Geometric models of vegetation (conceptual spaces) are reviewed. Spaces with samples or species as axes are termed flortistic spaces, as opposed to ecological space with environmental gradients as axes. The terms floristic and ecological relationships are defined as relationships in floristic and ecological spaces, respectively. Compositional turnover is pointed out as the essence of ecological gradients, and arguments in favour of measuring ecological distance in units of compositional turnover are given. The most important criteria for evaluation of ecological distance measures are considered to be linear response to separation along ecological gradients and robustness. Theoretical disadvantages of measures of floristic relationships used as ecological distance measures are discussed. A new measure of ecological distance, separation along a DCA ordination axis, is proposed. This measure and four measures of floristic relationships were tested on four simulated coenoclines (high and low beta diversity, high and low noise) using four weighting functions. The new measure was generally superior, particularly with noisy data. The distance measures generally performed best with intermediate weighting of a percentage cover scale. Application of DCA to calculation of ecological distances in multi-gradient systems is briefly discussed. The potential of DCA for rescaling of ecological gradients is emphasized, and some possible applications of rescaling are suggested.  相似文献   

14.
Abstract. In this study, data from dry temperate grassland vegetation in Denmark are used to compare the predictive power of gradients obtained by ordination. One of the problems of ordination methods based on weighted averaging, namely the assumption of symmetric, unimodal response curves, is investigated by smoothing species responses to simple and complex gradients respectively. It was found that species response types to a pH gradient are diverse and often deviate from a unimodal, symmetrical shape. Bimodal responses were also found, but they disappeared when more influential gradients were considered. Many species showed truncated responses with optima near gradient ends. In order to assess the impact of unrealistic response assumptions and reported problems with instability on the performance of DCA, the predictive potentials of measured variables and coenoclines extracted by DCA were compared. Despite field data violating the assumption of unimodal response, DCA was found to extract gradients predicting species abundance better than the environmental variables available. Shortcomings and advantages of indirect and direct methods in plant ecology are discussed.  相似文献   

15.
Abundances of eleven Sphagnum species in 800 sample plots are used to investigate the effect of DCA rescaling on Levins' measure of niche breadth relative to three partitions of the water-table gradient in a boreal Norwegian mire: (1) sample plots classified into 15 categories, each spanning an interval of 2 cm vertical extent, (2) as (1), but sequence of categories rescaled by DCA and sample plots reorganized into 15 categories with uniform beta diversity, and (3), sample plots ordinated by DCA and classified into 15 categories with uniform beta diversity by subdivision of an ordination axis highly correlated with median water-table. Habitat niche breadth is shown to be dependent on four issues (in order of supposedly decreasing importance): (1) scale, (2) noise level of data, (3) homogeneity of individual samples, and (4), weighting function. Six problems relevant to interpretation of measurements of niche breadth are discussed: (1) range of measures, (2) spacing of categories, (3) scale, (4) choice of gradients, (5) number of samples, and (6), comparability of studies. For measures of habitat niche breadth to be biologically meaningful, four conditions have to be satisfied: (1) the gradients studied have important impact on the studied species, (2) sampling is adequate, (3) scaling of gradients is in compositional turnover, and (4), comparability is demonstrated prior to comparison with other studies. Revisions of current methods are proposed. The role of DCA in niche studies is particularly emphasized.  相似文献   

16.
中条山中段植物群落数量分类与排序研究   总被引:22,自引:0,他引:22  
在群落样方调查基础上,采用双向指示种分析法(TWINSPAN)和除趋势对应分析(DCA)对中条山中段植物群落进行了数量分类和排序。TWINSPAN将53个样方分为14组,根据植被分类的原则划分为14个群丛,论述了各群丛的群落学特征。53个样方的DCA排序结果反映了植物群落类型与环境梯度之间的关系,表明影响群丛分布格局的主导生态因子为海拔高度、水分和热量。DCA排序将65个种分为5个种组,各种组在排序轴上的位置反映了种组成员的生态适应性及其在群落中的重要性和更新生态位。  相似文献   

17.
Nested sample plots of three sizes (16, 1, and 1/16 sq. m) from three different studies of Norwegian coniferous forests have been subjected to DCA ordination using the same choice of options. At each sample plot size, species quantities are recorded as frequency in 16 subplots. Beta diversity, measured as length of the first DCA axis, invariably increased upon lowering of sample plot size. The same applied to the eigenvalues of the axes. This is explained as a consequence of the weakening of structure in the data matrices when the fine-grained patterns of the vegetation are emphasized.  相似文献   

18.
Abstract. Sirén (1955) studied understorey species composition, tree stand properties and humus‐layer thickness in 64 unlogged forest stands on topographically and pedologically comparable sites. The stands were of even age (6 – 300 yr), stocked with the first or second tree generation after wildfire. The view of Sirén and several authors after him, that the vegetation of old‐growth boreal Picea forests is homogeneous on a broad scale, was examined by applying, in parallel, the partial variants of two ordination methods (DCA and PCA) to Sirén's vegetation data. Two main vegetation gradients were found: a major gradient running from recently burnt plots with prominence of pioneer species to plots with stand age > 100 yr, a well stocked tree layer and a thick humus layer, dominance of feather‐mosses and ample occurrence of shade‐tolerant as well as light‐preferring vascular plant species, and a second gradient along which first‐ and second‐generation plots segregate. The more prominent element of Betula trees in first‐ than in second‐generation stands < 100 yr contributed to the latter. A minor third gradient related to humus‐layer thickness was recovered by partial DCA only. The main vegetation gradient reappeared in separate ordinations of data from 47 mature forest stands (> 100 yr), but without being correlated with forest age. Variation among mature‐forest stands in the importance of pioneer species is considered mainly to be brought about by fine‐scale disturbance processes such as tree uprooting. Increasing importance of factors operating on within‐stand scales [development of a varied gap structure and stronger gradients in tree influence (radiation at ground level), soil moisture, soil depth and nutrient availability] with time is also reflected in the second and third mature‐forest ordination axes. Possible implications of the results for conservation of biological diversity and monitoring of changes in boreal forests are discussed.  相似文献   

19.
Abstract. We present a gradient analysis of 620 vegetation samples covering most of the floristic and environmental variation in semi‐natural grassland vegetation on well‐drained soils in Denmark. Vegetation was sampled using frequency in subplots. Explanatory variables were surface inclination, aspect, pH, geographical co‐ordinates together with indications of soil type. Detrended Correspondence Analysis revealed four floristic gradients that could be interpreted in ecological terms by measured variables supplemented with site calibrations based on weighted averaging of Ellenberg's indicator values. All four axes were interpreted using rank correlation statistics, and linear and non‐linear multiple regression of sample scores on explanatory variables. The first gradient was from dry calcareous to humid acidic grasslands; the second reflected an underlying gradient in fertility; the third reflected regional differentiation and the fourth was associated with variation in intensity of competition as indicated by association with calibrated Grime‐CSR values for the plots. We applied subset ordination to the data as a supplement to traditional permutation and correlation statistics to assess the consistency of ordination results. DCA axes 1 and 2 were consistent in space and time. This gradient analysis is discussed in a context of plant strategy theory and species diversity models. Ecocline patterns lend support to the view that grazing not only favours the ruderal strategy but also the stress‐tolerant strategy. The low rank of competition as an explanatory variable for the floristical gradients supports the notion that competitive effects play a subordinate role for species composition compared to microclimate and soil conditions in infertile semi‐natural grasslands.  相似文献   

20.
Minchin  Peter R. 《Plant Ecology》1987,71(3):145-156
Ecological gradients in the field layer of southern boreal forests in South Finland were studied in relation to the dominant tree species and the age of forest stands. The data are from a systematic sample of 529 plots from an area of 150 × 200 km, collected in the Third National Forest Inventory in 1951–53. Detrended correspondence analysis (DCA) was applied to log-transformed species cover values. It revealed three main gradients: fertility, moisture, and the effect of cattle grazing in forests (still extensive in the early 1950's). The fertility gradient dominated the first axis and the two latter sources of variation confounded with it in a complex manner in the first two axes of DCA. The second DCA axis was associated with canopy effects on understory pattern, with Pinus and Picea having opposite and Betula intermediate effects. These results were compared with an ordination model of Cajander's forest site types, based on DCA of independent, ideal data of 107 indicator species. The fertility gradient recovered by the model was almost identical to that obtained from the field data. The gradient was also stable from intermediate-age (40–69 yrold) to older forests. The forest site types showed rather large overlaps with main neighbouring types in composition of ground vegetation or nutrient status of the humus. Competitively efficient feather-mosses, which are dependent on nutrients released from the tree crowns, are considered important regulators of the understory vegetation. Accordingly, alternative approaches to the forest site type classification to be used in boreal forests treated by modern intensive forestry should give more weight to the effect of the canopy trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号