首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unexplained recurrent spontaneous abortion (URSA) has been assumed to be caused by a defect in maternal immunological tolerance to the fetus. Human amniotic epithelial cells (hAECs) have stem cell-like features and the ability to modulate the innate and adoptive immune responses. This study aimed to investigate whether hAECs have immunomodulatory effects on naive CD4+ T cells from URSA patients. hAECs were obtained from 15 healthy pregnant women and phenotypic profile of hAECs was determined by flow cytometry. Naive CD4+ T cells were isolated from 25 URSA patients using an immunomagnetic separation method. Naive T cells were stimulated with anti-CD3/anti-CD28 antibodies and co-cultured with different numbers of hAECs for 3 and 6 days. Immunomodulatory effect of hAECs on activation of stimulated T cell was assessed by flow cytometry and Enzyme-linked immunoasorbent assay (ELISA). The hAECs effect on pro-inflammatory cytokines production of activated T cells was also measured by ELISA. Our results indicated that hAECs significantly inhibited the activation of naive T cells in a dose-dependent manner (p?<?0.0001–0.05). They significantly reduced the production of transforming growth factor-beta1 (TGF-β1) of stimulated CD4+T cells (p?<?0.0001–0.05). Moreover, hAECs had potent immunomodulatory effects on the production of interferon-gamma (IFN-γ) and interleukin-17A (IL-17A) of activated T cells (p?<?0.0001–0.01). These findings suggest that hAECs may be a suitable cell source to modulate abnormal immune responses in women with URSA.  相似文献   

2.
Thymic involution is evolutionarily conserved and occurs early in life. However, the physiological significance remains elusive of this seemingly detrimental process. The present study investigated the potential impact of altered thymic output on T cell memory using ovalbumin (OVA) expressed by Listeria monocytogenes as a model antigen. Suspension of thymic emigration by thymectomy was shown to lead to a marked increase in the frequency and total number of OVA-specific memory T cells. In contrast, oversupply of thymic emigrants through thymic grafting caused a significant decrease of such cells. When rechallenged with L. monocytogenes expressing OVA, the thymectomized mice mounted a more potent recall response as evidenced by the enlarged population of OVA-specific tetramer+ cells and the accelerated clearance of the bacteria. Notably, the memory-enhancing effect of thymectomy was abrogated following weekly adoptive transfer of naive T cells. Together, data from the present study indicate that reduced thymic output favors the maintenance of the memory T cell pool.  相似文献   

3.
The following study was undertaken to better understand the mechanisms that relate the homeostatic set point of the peripheral T cell population to energy availability in mice. We report that the total number of peripheral naïve and memory CD4+ and CD8+T cells notably declined after one week of malnourishment, a time period too short to be entirely due to malnutrition-induced thymic involution. Peripheral malnourished T cells expressed higher levels of the IL-7 receptor component, CD127, and were less sensitive to death-by-neglect as compared to control T cells. Overall levels of IL-7 were similar in malnourished and control mice. Adoptive transfer studies revealed that CD127 expression did not correlate with increased survival in vivo and that all naïve CD8+T cells upregulated CD127, regardless of initial expression levels. Corticosterone levels were elevated in malnourished mice and this correlated in time with peripheral T cell up-regulation of CD127 and the diminishment of the peripheral T cell pool. Overall, these data suggest a model in which CD127 levels are up-regulated quickly during malnourishment, thereby increasing the scavenge rate of IL-7, and providing a mechanism to quickly adjust the total number of T cells during malnutrition.  相似文献   

4.
BACKGROUND: Despite an apparently active host response, Helicobacter pylori infection can persist for life. Unexpectedly, T cells from apparently uninfected individuals respond to H. pylori antigen by proliferating. Also, the T-cell proliferative response appears to be less in infected compared with uninfected individuals. MATERIALS AND METHODS: We have investigated the T-cell response of isolated human peripheral blood, naive, and memory CD4+ T cells to H. pylori antigen in infected and uninfected subjects. RESULTS: In agreement with previous findings, the peripheral blood proliferative response was higher in uninfected compared with infected subjects. Interestingly, there was a response in CD4+ CD45RO+ (memory) and CD4+CD45RA+ (naive) subsets. The RO/RA ratio of the response to H. pylori antigen was 0.8-2.1 in both H. pylori-positive and H. pylori-negative subjects, which was similar to that of a known superantigen (2.5 and 2.2 in Helicobacter-positive and -negative subjects, respectively) whereas the RO/RA response ratio to a recall antigen (tetanus toxoid) was 9.8 and 18.7 in Helicobacter-positive and -negative subjects, respectively. Mononuclear cells isolated from cord blood also responded to H. pylori antigen, whereas there was no response to tetanus toxoid. The cord blood response and CD4+ CD45RA+ cell response to H. pylori antigen were inhibited predominantly by anti-HLA-DR and to some extent by anti-HLA-DQ antibodies. Investigation of the response to five different recombinant H. pylori antigens identified two that produced a response in naive T cells. CONCLUSIONS: These data suggest that H. pylori possesses molecules that cause higher than expected proliferation of naive T cells.  相似文献   

5.
Due to homeostasis total naive T cell numbers remain fairly constant over life despite a gradual involution of the thymus. The contribution of the thymus to maintaining naive T cell pools is typically measured with TCR excision circles (TRECs) that are formed in thymocytes. The mechanisms underlying thymic involution are poorly understood. Some data suggest that thymocytes undergo fewer divisions in old (small) than young (large) thymi, and other data suggest that the number of TRECs per thymocyte is independent of age. If thymic involution were associated with a decreased number of divisions of the thymocytes, this would markedly complicate the interpretation of TREC data. To study this we develop a mathematical model in which the division rate of thymocytes decreases with increasing age. We describe the dilution of TRECs formed during the arrangement of both chains of the TCR by division of thymocytes, recent thymic emigrants, and mature naive T cells. The model behavior is complicated as TREC contents in naive T cells can increase with age due to decreased dilution in the thymus. Because our model is consistent with current data on the effects of age and thymectomy on TRECs in peripheral T cells, we conclude that aging may well affect thymocyte division, which markedly complicates the interpretation of TREC data. It is possible, but more difficult, to let the model be consistent with the rapid changes in alpha and beta TRECs observed shortly after HIV infection.  相似文献   

6.
Virtual memory T cells are foreign antigen‐inexperienced T cells that have acquired memory‐like phenotype and constitute 10–20% of all peripheral CD8+ T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen‐experienced memory T cells are incompletely understood. By analyzing T‐cell receptor repertoires and using retrogenic monoclonal T‐cell populations, we demonstrate that the virtual memory T‐cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self‐reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T‐cell compartment via modulating the self‐reactivity of individual T cells. Although virtual memory T cells descend from the highly self‐reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self‐reactivity in polyclonal T cells for the generation of functional T‐cell diversity.  相似文献   

7.
The immune system of vertebrates may attack its own body and cause autoimmunity diseases. To prevent autoimmunity, regulatory T cells suppress the activity of the autoreactive effector T cells, but they also interrupt normal immune reactions against foreign antigens. In this paper, we discuss the advantage of having some regulatory T cells by considering the host's ability of coping with foreign antigens and the harm of autoimmunity. Assumptions are as follows: the immature T cells reactive to abundant self-antigens are eliminated, those reactive to rare self-antigen will become regulatory T cells, and those that fail to interact with the antigens to which they are reactive will become effector T cells. Some self-reactive immature T cells may fail to interact with their own target antigens during the limited training period, and will later become effector T cells, causing autoimmunity. Analysis suggests that, having some regulatory T cells can never be advantageous to the host, if activated regulatory T cells suppress effector T cells at any location of the body (global suppression). In contrast, producing some regulatory T cells can be beneficial, if the body is composed of many compartments and regulatory T cells suppress the immune reactions only within the same compartment (localized suppression). This requires regulatory T cells to stop circulating once they are activated by their own target self-antigens.  相似文献   

8.
Summary The in vivo excision repair functions of Escherichia coli exonuclease III and 3-methyladenine DNA glycosylase I, and bacteriophage T4 pyrimidine dimer-DNA glycosylase were investigated. Following exposure of bacteriophage T4 or lambda to methyl methanesulfonate or ultraviolet irradiation, survival was determined by plating on E. coli have various genetic backgrounds. Although exonuclease III was shown to participate in base excision repair initiated by 3-methyladenine DNA glcosylase I, it had no detectable role in base excision repair initiated by the T4 pyrimidine dimer-DNA glycosylase. Despite its 3 apurinic/apyrimidinic endonuclease activity in vitro, T4 pyrimidine dimer-DNA glycosylase, even in large quantities, did not complement mutants defective in exonuclease III in the repair of apurinic sites generated by 3-methyladenine DNA glycosylase I in vivo.  相似文献   

9.
We examined the role of the PD-1 pathway on the activation of naive, memory, and recently activated human CD4+ T cells to test whether they responded differently. PD-1 ligand blockade modestly enhanced the percentage of responding T cells and production of IFN-gamma in a primary response to myelin basic protein (MBP) in normal donors. PD-1 ligand blockade strongly enhanced proliferation and cytokine production by memory or recently activated T cells (tetanus toxoid and MBP). Blockade of PD-L1 alone had more effect than PD-L2, consistent with its higher expression on ex vivo dendritic cells; furthermore, anti-PD-L1 plus anti-PD-L2 resulted in the greatest enhancement. Moreover, PD-L1-Ig inhibited anti-CD3 induced activation of naive, memory, and recently activated CD4+ T cells. Together, our data demonstrated PD-1 functioned as a negative regulatory pathway on naive T cells during a primary response, and more potently, on memory or recently activated T cells during a secondary response.  相似文献   

10.
The concept of non-self recognition through germ-line encoded pattern recognition receptors (PRRs) has been well-established for professional innate immune cells. However, there is growing evidence that also T cells employ PRRs and associated effector functions in response to certain non-self or damage signals. Inflammasomes constitute a special subgroup of PRRs that is hardwired to a signaling cascade that culminates in the activation of caspase-1. Active caspase-1 processes pro-inflammatory cytokines of the IL-1 family and also triggers a lytic programmed cell death pathway known as pyroptosis. An increasing body of literature suggests that inflammasomes are also functional in T cells. On the one hand, conventional inflammasome signaling cascades have been described that operate similarly to pathways characterized in innate immune cells. On the other hand, unconventional functions have been suggested, in which certain inflammasome components play a role in unrelated processes, such as cell fate decisions and functions of T helper cells. In this review, we discuss our current knowledge on inflammasome functions in T cells and the biological implications of these findings for health and disease.  相似文献   

11.
Local polyethylene-glycol (PEG)-modified interleukin-2 (IL-2) immunotherapy of the guinea pig Line 10 (L10) tumor was previously demonstrated to evoke long-lasting systemic immunity after cure of the tumor and metastases. T cells, most likely the helper T cell subpopulation, were demonstrated to be crucial to the antitumor effects. Here we show that systemic immunity is induced within 7 days after the start of PEG-IL-2 therapy, indicating a rapid systemic priming of L10-specific T cells. No in vitro cytotoxic activity was detected in cell suspensions obtained from the primary tumor site, the regional lymph node or the spleen when isolated during (days 21 and 28) intratumoral treatment with 200 000 IU PEG-IL-2. These data confirm our carlier results obtained with 60 000 IU PEG-IL-2. Moreover, no cytolytic activity was observed in the chromium-release assay after in vitro restimulation with irradiated tumor cells. Specific L10 immunity can be transferred using spleen cell suspensions. Depletion of such a suspension of helper T cells resulted in rejection of the primary tumor in two out of four animals, but all the guinea pigs developed lymph node metastases. Removal of the cytotoxic/suppressor phenotype caused rejection of the dermal tumor in four of eight guinea pigs, but the capacity to prevent lymph node metastases was retained in all animals. Thus, depletion of either subtype reduces, but does not abrogate, the capacity to transfer L10 immunity with spleen cells. In conclusion, our data suggest that tumor cell killing through direct T cell cytotoxicity is not the main mode of action in PEG-IL-2-induced L10 tumor regression, PEG-IL-2 therapy induces early systemic immunity, resulting in rejection of a distant tumor, and the transfer of this immunity depends mainly on the presence of helper T cells, although cytotoxic T cells may also play a role.  相似文献   

12.
To examine directly whether a limited number of naive T cells transferred to lymphopenic hosts can truly fill the peripheral naive T cell pool, we compared the expansion and phenotype of naive T cells transferred to three different hosts, namely recombination-activating gene-deficient mice, CD3epsilon-deficient mice, and irradiated normal mice. In all three recipients, the absolute number of recovered cells was much smaller than in normal mice. In addition, transferred naive T cells acquired a memory-like phenotype that remained stable with time. Finally, injected cells were rapidly replaced by host thymic migrants in irradiated normal mice. Only continuous output of naive T cells by the thymus can generate a full compartment of truly naive T cells. Thus, conversion of naive T cells to a memory-like phenotype in lymphopenic hosts is not related to a homeostatic mechanism that fills the peripheral naive T cell pool.  相似文献   

13.
14.
The elimination of activated T cells by FAS-mediated signaling is an important immunoregulatory mechanism used to maintain homeostasis and prevent tissue damage. T cell receptor-dependent signals are required to confer sensitivity to FAS-mediated re-stimulation-induced cell death (RICD), however, the nature of these signals is not well understood. In this report, we show, using T cells from CD4-deficient mice reconstituted with a tail-less CD4 transgene, that CD4-dependent signaling events are a critical part of the competency signal required for RICD. This is in part due to defects in FAS receptor signaling complex formation as shown by decreased recruitment of FAS and caspase 8 into lipid rafts following antigen re-stimulation in the absence of CD4-dependent signals. In addition, in the absence of CD4-dependent signals, effector T cells have a selective defect in IL-2 secretion following peptide re-stimulation, while provision of exogenous IL-2 during re-stimulation partially restores susceptibility to RICD. Importantly, IL-2 production and proliferation after primary peptide stimulation is comparable between wild type and CD4-deficient T cells indicating that the requirement for CD4-dependent signaling events for IL-2 production is developmentally regulated and is particularly critical in previously activated effector T cells. In total, our results indicate that CD4 co-receptor dependent signaling events specifically regulate effector T cell survival and function. Further, these data suggest that CD4-dependent signaling events may protect against the decreased IL-2 production and resistance to cell death seen during chronic immune stimulation.  相似文献   

15.
Naive T cells undergo robust proliferation in lymphopenic conditions, whereas they remain quiescent in steady-state conditions. However, a mechanism by which naive T cells are kept from proliferating under steady-state conditions remains unclear. In this study, we report that memory CD4 T cells are able to limit naive T cell proliferation within lymphopenic hosts by modulating stimulatory functions of dendritic cells (DC). The inhibition was mediated by IL-27, which was primarily expressed in CD8(+) DC subsets as the result of memory CD4 T cell-DC interaction. IL-27 appeared to be the major mediator of inhibition, as naive T cells deficient in IL-27R were resistant to memory CD4 T cell-mediated inhibition. Finally, IL-27-mediated regulation of T cell proliferation was also observed in steady-state conditions as well as during Ag-mediated immune responses. We propose a new model for maintaining peripheral T cell homeostasis via memory CD4 T cells and CD8(+) DC-derived IL-27 in vivo.  相似文献   

16.
Although it is widely believed that non‐segmental vitiligo (NSV) results from the autoimmune destruction of melanocytes, a clear understanding of defects in immune tolerance, which mediate this uncontrolled self‐reactivity, is still lacking. In the present study, we systemically evaluated circulating regulatory T (Treg) cells, including CD4+CD25+FoxP3+ Treg cells and invariant natural killer T (iNKT) cells, as well as naïve and memory CD4+ and CD8+ T cells and their cytokine production, in a cohort of 43 progressive NSV patients with race‐, gender‐, and age‐matched healthy controls. We found that the general immunophenotypes of CD4+ and CD8+ T cells and the percentage of CD4+CD25+FoxP3+ Tregs were comparable between NSV and healthy controls. However, percentages of peripheral iNKT cells were significantly decreased in NSV patients compared to that in healthy controls. Our data confirm the previous notion that the percentage of peripheral CD4+CD25+FoxP3+ Tregs remains unaltered in NSV and suggests the involvement of defective iNKT cells in the pathogenesis of NSV.  相似文献   

17.
Immunologic abnormalities of natural killer (NK) cells and T cells play a role in the pathogenesis of systemic lupus erythematosus (SLE). CD161 is expressed on most of the NK cells and on some T cells. The quantities of CD161-expressing cells and expression levels of CD161 were analyzed in T cells and NK cells from patients with SLE compared with normal controls. The expression of CD161 on NK cells, NKT cells, CD4+ T cells, and CD8+ T cells in peripheral blood from patients with inactive SLE and active SLE, and from the normal controls group were determined using flow cytometry. The frequency and expression level of CD161 in the lymphocyte subsets and its relationship with the quantity of regulatory T cells, anti-double stranded DNA antibody, and the titer of antinuclear antibody were evaluated. Both the percentages of the CD161+ subpopulation and the mean fluorescence intensities (MFIs) of CD161 in CD8+ T cells and NKT cells decreased significantly in SLE patients compared with normal controls (P < .001). The CD161 expression in CD8+ T cells and NKT cells also decreased in the anti-dsDNA (+) group (P < .05). The counts of Treg cells were lower in SLE patients and were weakly correlated with the percentage of the CD161 subpopulation (r = 0.229, P = .016) and the MFIs of CD161 expression in CD8+ T cells (r = .232, P = .014). The frequencies and levels of CD161 expression on CD8+ T cells and NKT cells were reduced in SLE patients, suggesting that an abnormality of these cells was related to the pathogenesis of SLE.  相似文献   

18.
The adaptive immune system of a vertebrate may attack its own body, causing autoimmune diseases. Regulatory T cells suppress the activity of the autoreactive effector T cells, but they also interrupt normal immune reactions against foreign antigens. In this paper, we discuss the optimal number of regulatory T cells that should be produced. We make the assumptions that some self-reactive immature T cells may fail to interact with their target antigens during the limited training period and later become effector T cells causing autoimmunity, and that regulatory T cells exist that recognize self-antigens. When a regulatory T cell is stimulated by its target self-antigen on an antigen-presenting cell (APC), it stays there and suppresses the activation of other naive T cells on the same APC. Analysis of the benefit and the harm of having regulatory T cells suggests that the optimal number of regulatory T cells depends on the number of self-antigens, the severity of the autoimmunity, the abundance of pathogenic foreign antigens, and the spatial distribution of self-antigens in the body. For multiple types of self-antigen, we discuss the optimal number of regulatory T cells when the self-antigens are localized in different parts of the body and when they are co-localized. We also examine the separate regulation of the abundances of regulatory T cells for different self-antigens, comparing it with the situation in which they are constrained to be equal.  相似文献   

19.
Malaria remains a major global health problem and cerebral malaria (CM) is one of the most serious complications of this disease. Recent years have seen important advances in our understanding of the pathogenesis of cerebral malaria. Parasite sequestration, a hallmark of this syndrome, is thought to be solely responsible for the pathological process. However, this phenomenon cannot explain all aspects of the pathogenesis of CM. The use of an animal model, Plasmodium berghei ANKA in mice, has allowed the identification of specific pathological components of CM. Although multiple pathways may lead to CM, an important role for CD8+ T cells has been clarified. Other cells, including platelets, and mediators such as cytokines also have an important role. In this review we have focused on the role of T cells, and discuss what remains to be studied to understand the pathways by which these cells mediate CM.  相似文献   

20.
Splenocytes separated by physical means and classified as T cells by immunologic tests and computerized microphotometric analysis are differentiated into subgroups by analysis of the distribution patterns of Feulgen-positive nuclear DNA. In like fashion T cells obtained as purified preparations after separation on a nylon column, and accepted as T cells by micromorphometric analysis were subjected to further computerized morphometric analysis of nuclear DNA to form subgroups of cells. In each case, the number and composition of the detected subgroups were consistent. The classification does not appear to reflect any obvious phases of the cell cycle and is not dependent upon the sex and strain of mice from which the cells were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号