首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The left end of the genome of mouse adenovirus type 1 (also known as strain FL) was characterized by determination of the DNA sequence, amino acid similarities with early region proteins of primate adenoviruses, and a functional assay. Several specific DNA sequence features were similar to those found in human adenoviruses, and open reading frames from this region could encode proteins similar to human adenovirus early region 1A and early region 1B proteins. DNAs from this region were tested in transient-expression assays in human and mouse cells were found to transactivate the human adenovirus type 5 early region 3 promoter fused to the chloramphenicol acetyltransferase gene. The data indicate structural and functional homologies between mouse adenovirus type 1 early region 1 and early region 1 of primate adenoviruses.  相似文献   

2.
The complete DNA sequence of the avian adenovirus chicken embryo lethal orphan (CELO) virus (FAV-1) is reported here. The genome was found to be 43,804 bp in length, approximately 8 kb longer than those of the human subgenus C adenoviruses (Ad2 and Ad5). This length is supported by pulsed-field gel electrophoresis analysis of genomes isolated from several related FAV-1 isolates (Indiana C and OTE). The genes for major viral structural proteins (Illa, penton base, hexon, pVI, and pVIII), as well as the 52,000-molecular-weight (52K) and 100K proteins and the early-region 2 genes and IVa2, are present in the expected locations in the genome. CELO virus encodes two fiber proteins and a different set of the DNA-packaging core proteins, which may be important in condensing the longer CELO virus genome. No pV or pIX genes are present. Most surprisingly, CELO virus possesses no identifiable E1, E3, and E4 regions. There is 5 kb at the left end of the CELO virus genome and 15 kb at the right end with no homology to Ad2. The sequences are rich in open reading frames, and it is likely that these encode functions that replace the missing El, E3, and E4 functions.  相似文献   

3.
Replication-Defective Vector Based on a Chimpanzee Adenovirus   总被引:5,自引:0,他引:5       下载免费PDF全文
An adenovirus previously isolated from a mesenteric lymph node from a chimpanzee was fully sequenced and found to be similar in overall structure to human adenoviruses. The genome of this virus, called C68, is 36,521 bp in length and is most similar to subgroup E of human adenovirus, with 90% identity in most adenovirus type 4 open reading frames that have been sequenced. Substantial differences in the hexon hypervariable regions were noted between C68 and other known adenoviruses, including adenovirus type 4. Neutralizing antibodies to C68 were highly prevalent in sera from a population of chimpanzees, while sera from humans and rhesus monkeys failed to neutralize C68. Furthermore, infection with C68 was not neutralized from sera of mice immunized with human adenovirus serotypes 2, 4, 5, 7, and 12. A replication-defective version of C68 was created by replacing the E1a and E1b genes with a minigene cassette; this vector was efficiently transcomplemented by the E1 region of human adenovirus type 5. C68 vector transduced a number of human and murine cell lines. This nonhuman adenoviral vector is sufficiently similar to human serotypes to allow growth in 293 cells and transduction of cells expressing the coxsackievirus and adenovirus receptor. As it is dissimilar in regions such as the hexon hypervariable domains, C68 vector avoids significant cross-neutralization by sera directed against human serotypes.  相似文献   

4.
5.
The genome of bat adenovirus 2 was sequenced and analyzed. It is similar in size (31,616 bp) to the genomes of bat adenovirus 3 and canine adenoviruses 1 and 2. These four viruses are monophyletic and share an identical genome organization, with one E3 gene and four E4 genes unique to this group among the mastadenoviruses. These findings suggest that canine adenoviruses may have originated by interspecies transfer of a vespertilionid bat adenovirus.  相似文献   

6.
7.
Virus specific, major histocompatibility complex-restricted, cytotoxic T lymphocytes (CTL) generated in Fischer strain rats infected with human adenovirus type 5 (Ad5) were found to recognize antigenic determinants encoded within the Ad5 early region 1A (E1A) gene. Preliminary mapping studies suggest that the E1A CTL epitopes are encoded within the regions between bp 625 to 810 and 916 to 974 in the first exon of this gene. These epitope-coding regions occur within subregions of E1A that are conserved functionally, and to some extent structurally (approximately 50% sequence homology), among adenoviruses of different groups. Nevertheless, Ad5-specific CTL lysed only targets infected with adenoviruses of the same group (group C; e.g., Ad2) and not targets infected with adenoviruses of different groups (groups A, B, and E). These results suggest that virus-specific CTL may limit adenoviral dissemination by destroying virus-infected cells at an early stage in the viral replicative cycle, during E1A gene expression. Expression of other adenovirus genes does not appear to be required to target infected cells for elimination by CTL.  相似文献   

8.
Abstract The DNA of mouse adenovirus strain K87 (MAd-2) was cloned and mapped with restriction endonucleases Bgl II, Cla I, Eco RI, Hin dII and Sph I. Large differences were found the MAd-2 and MAd-1 (strain FL) DNA molecules in terms of number and location of restriction sites. The MAd-2 genome also appeared as larger size than in the MAd-1 genome (34.72 kb vs. 30.14 kb). Our results confirm the existence of two distinct adenovirus species in the mouse. Hybridization experiments, on the other hand, indicate that both MAd-1 and MAd-2 are genetically related to human adenovirus type 2 (HAd-2). Overlapping regions of DNA homology are located in genes coding for HAd-2 structural components which could explain serological relationships observed between the human and the murine adenoviruses.  相似文献   

9.
10.
We located the cleavage sites for restriction endonucleases EcoRI, HindIII, and BamHI on the genome of bovine adenovirus 7. Cross-hybridization at reduced stringency revealed two regions of homology shared by the DNA of human adenovirus 2 and bovine adenoviruses 7 and 3. These regions correspond to the hexon and the IVa2 protein genes of the human adenovirus. Another region of homology shared only by the human adenovirus and bovine adenovirus 7 corresponded to the penton or the polypeptide IIIa genes. These results allowed us to align the restriction map of bovine adenovirus 7 with respect to the other adenoviruses.  相似文献   

11.
12.
Intertypic recombinant fowl adenoviruses (FAVs) were generated to determine regions of the viral genome involved in virulence. Recombinants were produced with two serotype 8 FAVs, mildly virulent CFA 3 and hypervirulent CFA 40. Restriction endonuclease fragments from the genomes of the two FAVs were used to transfect primary chicken kidney cells. Virulence testing of these recombinants located the region responsible for differences in virulence to an 8.4-kb fragment of the genome located between kb 26.6 and 35.0. According to data available for a serotype 10 FAV that had been partially characterized in the laboratory, this segment of the genome contained three genes of known identity (100K, 33K, and pVIII) and a region between kb 31 and 35 with unknown coding potential (although this information subsequently became available for a serotype 1 FAV, CELO). Therefore, the region between kb 30.5 and 34.5 was sequenced. The results revealed that the unknown region encoded a fiber gene on the right strand and several small open reading frames of unknown identity on the left strand. Further recombinant viruses containing defined exchanges within the 4-kb fragment were constructed, and virulence testing of these viruses indicated that the fiber was responsible for differences in virulence for CFA 40 and CFA 3.  相似文献   

13.
Historically, the adenoviral E3 region was found to be nonessential for viral replication in vitro. In addition, adenoviruses whose genome was more than approximately 105% the size of the native genome were inefficiently packaged. These profound observations were used experimentally to insert transgenes into the adenoviral backbone. More recently, however, the reintroduction of the E3 region into oncolytic adenoviruses has been found to positively influence antitumor efficacy in preclinical models and clinical trials. In the studies reported here, the granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA sequence has been substituted for the E3-gp19 gene in oncolytic adenoviruses that otherwise retained the E3 region. Five viruses that differed slightly in the method of transgene insertion were generated and compared to Ar6pAE2fGmF (E2F/GM/DeltaE3), a previously described E3-deleted oncolytic adenovirus encoding GM-CSF. In all of the viruses, the human E2F-1 promoter regulated E1A expression and GM-CSF expression was under the control of the adenoviral E3 promoter and the packaging signal was relocated immediately upstream from the right terminal repeat. The E3-gp19-deleted viruses had similar cytolytic properties, as measured in vitro by cytotoxicity assays, but differed markedly in their capacity to express and secrete GM-CSF. Ar15pAE2fGmF (E2F/GM/E3b), the virus that produced the highest levels of GM-CSF and retained the native GM-CSF leader sequence, was selected for further analysis. The E2F/GM/E3b and E2F/GM/DeltaE3 viruses exhibited similar cytotoxic activity and GM-CSF production in several tumor cell lines in vitro. However, when compared in vivo in nude mouse xenograft tumor models, E2F/GM/E3b spread through tumors to a greater extent, resulted in higher peak GM-CSF and total exposure levels in both tumor and serum, and was more efficacious than the E3-deleted virus. Using the matched WI-38 (parental) and WI-38-VA13 (simian virus 40 large T antigen transformed) cell pair, GM-CSF was shown to be selectively produced in cells expressing high levels of E2F, indicating that the tumor-selective E2F promoter controlled E1A and GM-CSF expression.  相似文献   

14.
Common human adenovirus (Ad) vectors are derived from serotype 2 or 5, which use the coxsackie-adenovirus receptor (CAR) as their primary cell receptor. We investigated the receptor usage of mouse adenovirus type 1 (MAV-1), which in vivo is characterized by a pronounced endothelial cell tropism. Alignment of the fiber knob sequences of MAV-1 and those of CAR-using adenoviruses, revealed that amino acid residues, critical for interaction with CAR, are not conserved in the MAV-1 fiber knob. Attachment of MAV-1 to Chinese hamster ovary (CHO) cells was not increased by stable transfection with mouse CAR, whereas the binding efficiency of Ad2 was 20-fold higher in the mouse CAR-transfectant compared to the wild type cells. Also, purified fiber knob of Ad5, which is interchangeable with the Ad2 fiber knob, did not compete with MAV-1 for receptor binding, indicating that MAV-1 binds to a receptor different from CAR. These results support further exploration of an MAV-1-derived vector as a potential vehicle for gene delivery to cell types which are not efficiently transduced by human adenovirus vectors.  相似文献   

15.
Human adenovirus cloning vectors based on infectious bacterial plasmids   总被引:8,自引:0,他引:8  
By making use of the fact that human adenovirus DNA circularizes in infected cells, and that circular forms of the viral genome are infectious, we have developed an improved adenovirus-based cloning system. A deletion mutant of adenovirus type 5 (Ad5) with deletions in early regions 1 (E1) and 3 (E3) was converted to a bacterial plasmid which can regenerate infectious virus following transfection into human 293 cells. A single XbaI recognition site in the deleted E3 region serves as a site for the insertion of foreign DNA. We have used this system to clone a number of genes into the Ad5 genome and describe the insertion of the neomycin/G418 resistance marker into Ad5 as an example.  相似文献   

16.
Adenovirus type 35 (Ad35) is an important pathogen in immunosuppressed individuals such as AIDS patients and bone marrow transplant recipients. Ad35, a member of Ad subgroup B, differs with respect to pathogenic properties from the more fully characterized subgroup C Ad, such as Ad2 and Ad5. One region of human Ad which varies between subgroups and which may influence Ad pathogenesis is early region 3 (E3), a region which appears to modulate the immune response to Ad infection. In order to begin to characterize the differences between the Ad35 E3 and the E3 of other Ad, the complete DNA sequence of the Ad35 E3 promoter and coding sequence along with two flanking structural proteins, pVIII and fiber, has been determined. Ad35 contains open reading frames which are unique to the subgroup B Ad in addition to the four characterized immunoregulatory proteins encoded by the subgroup C Ad. Further evaluation of the sequence of one of these proteins, 18.5K, which is the class-I major histocompatibility complex (MHC) binding protein of 18.5 kDa, demonstrates that the amino acid sequence of this Ad2 gp19K homologue fits a proposed model of gp19K-MHC interaction. Analysis of promoter sequences demonstrates that an NF-κB site found in the subgroup C E3 promoter is absent from the Ad35 E3 promoter. In addition, the fiber genes of Ad35 and other subgroup B Ad have been shown to diverge in an unexpected way, yielding three clusters of fiber homology.  相似文献   

17.
Enteric adenovirus type 40 (Ad40) and Ad41 form the sixth subgenus of human adenoviruses. They are associated with infantile diarrhea but cannot be isolated in conventional cell cultures. The genome of the fastidious enteric Ad41 has been cloned, and the cleavage sites of the genome produced by restriction endonucleases BamHI, EcoRI, HpaI, NruI, PvuI, and SalI have been mapped. To develop useful hybridization methods for direct detection of adenoviruses, a restriction fragment library containing Ad41 DNA, with plasmid pBR322 as vector, has been constructed. Clones have been isolated which contain 8 of 10 possible BamHI fragments of Ad41, inserted into the BamHI cleavage site of the vector. Two of these clones are particularly useful for the detection of adenoviruses. One clone detects members of all human adenovirus subgenera, and the second clone is specific for enteric adenoviruses, in particular Ad41. A conspicuous absence of detectable homology was noted at 1.5 to 3.3 map units of the Ad41 genome in hybridizations against other serotypes of adenoviruses, including the closely related enteric Ad40. This sequence corresponds to the 5' portion of early region Ia.  相似文献   

18.
In contrast to most cells of mouse origin, cell lines derived from mouse epidermis are permissive for replication of human adenovirus type 5. The extent of epidermal cell differentiation correlated with the level of E1A expression and virus replication. Mouse epidermal cells may provide useful models for cancer therapy using replication-competent human adenoviruses.  相似文献   

19.
20.
A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号