首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of a discharge induced by a coaxial microwave plasmatron with a gas-supply channel in the inner electrode of a coaxial waveguide is investigated. A plasmatron with a power of up to 10 W operates at a frequency of 10 GHz. Depending on the operation regime, the discharge takes either a filament or torch form. A plasma filament arises at low flow rates of the working gas (argon) and occurs at the border of the potential core of the gas jet. A torch discharge occurs at high flow rates and has the form of a hollow cone. In both cases, the discharge arises in the potential core of the gas jet and does not spread beyond it. The distribution of the microwave field in the discharge plasma is determined.  相似文献   

2.
It is shown that, in a microwave torch discharge in an argon jet injected into an oxygen atmosphere at normal pressure, quasi-resonant energy transfer from metastable argon atoms to molecules of oxygen and ozone generated in the torch shell and, then, to oxygen atoms produced via the dissociation of molecular oxygen and ozone leads to the inverse population of metastable levels of atomic oxygen. As a result, the excited atomic oxygen with population inversions becomes a gain medium for lasing at wavelengths of 844.6 and 777.3 nm (the 33 P–33 S and 35 P–35 S transitions). It is shown that an increase in the ozone density is accompanied by an increase in both the lasing efficiency at these wavelength and the emission intensity of the plasma-forming argon at a wavelength of 811.15 nm (the 2 P 04s2 P 04p transition). When the torch operates unstably, the production of singlet oxygen suppresses ozone generation; as a result, the lasing effect at these wavelengths disappears.  相似文献   

3.
The possibility of using a microwave coaxial plasmatron (a microwave torch) as an efficient plasmachemical generator of nitric oxides in an air jet has been studied experimentally. A plasmachemical model of the generator is developed. Results of calculations by this model do not contradict experimental results. A conclusion about the mechanisms governing NOx production in a plasma torch is drawn by comparing the experimental and calculated results.  相似文献   

4.
A microwave argon plasma torch is used to excite the spectra of various materials admixed to the working gas. It is shown that this torch is a very efficient tool for detecting extremely low impurity concentrations in the sample material. An important advantage of the method is the simplicity of testing liquid and dusty samples. The torch design and the device for spectral analysis created at the Institute of General Physics are described. The parameters of the torch plasma are estimated. These estimates agree satisfactorily with the observations of other authors. The spectroscopic studies of impurities in distilled water with the use of a plasma torch showed that the sensitivity of this technique is no worse than 10?9, which is comparable with the sensitivity of inductively coupled plasma devices.  相似文献   

5.
The characteristics of a microwave discharge in an argon jet injected axially into a coaxial channel with a shortened inner electrode are numerically analyzed using a self-consistent equilibrium gas-dynamic model. The specific features of the excitation and maintenance of the microwave discharge are determined, and the dependences of the discharge characteristics on the supplied electromagnetic power and gas flow rate are obtained. The calculated results are compared with experimental data.  相似文献   

6.
This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators — a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes.  相似文献   

7.
Results are presented from experimental studies of the formation dynamics, spatial structure, and parameters of a pulse-periodic microwave discharge excited in a coaxial waveguide. The experimental setup allows the stable generation of a plasma jet in molecular and atomic gas flows at pressures close to atmospheric pressure without applying additional initiators. The complicated sequence of processes leading to torch formation cannot be adequately described with conventional models of a discharge sustained by a surface electromagnetic wave.  相似文献   

8.
A conceptual design of a microwave gas-discharge plasma source is described. The possibility is considered of creating conditions under which microwave energy in the plasma resonance region would be efficiently converted into the energy of thermal and accelerated (fast) electrons. Results are presented from interferometric and probe measurements of the plasma density in a coaxial microwave plasmatron, as well as the data from probe measurements of the plasma potential and electron temperature. The dynamics of plasma radiation was recorded using a streak camera and a collimated photomultiplier. The experimental results indicate that, at relatively low pressures of the working gas, the nonlinear interaction between the microwave field and the inhomogeneous plasma in the resonance region of the plasmatron substantially affects the parameters of the ionized gas in the reactor volume.  相似文献   

9.
10.
Results are presented from experimental studies of electromagnetic emission and plasma oscillations in the plasma-frequency range in the Octupole Galathea confinement system. Experiments are performed in the electric-discharge mode at low magnetic fields (the barrier field is 0.002–0.01 T); the working gas is argon or hydrogen. It is found that the most intense microwave oscillations at frequencies of 1–5 GHz are excited near the plasma axis and in the magnetic-barrier region. The oscillations are excited by the discharge current and decay after the voltage is switched off. The experiments show that microwave oscillations excited in the magnetic-barrier region are responsible for the small value of the energy confinement time in the system.  相似文献   

11.
A microwave coaxial plasmatron (microwave torch) is used as a plasmachemical converter of methane into hydrogen and hydrocarbons. The measured energy cost of methane decomposition is close to its minimum theoretical value. Such a low energy cost is unsurpassed for reactors operating at atmospheric pressure. A model of the plasmachemical converter is constructed. The results of calculations in the frame-work of this model agree well with experimental data.  相似文献   

12.
Molecular dynamics simulations of argon molecules confined between two parallel graphene sheets are carried out to investigate the parameters affecting heat transfer and thermal properties. These parameters include wall–fluid interaction strength, fluid density and wall temperature. For constant wall temperature simulations, we show that the first two parameters have influence on near-wall fluid density. As a result, the heat transfer at wall–fluid interfaces and thus through argon molecules across the domain will change. Also, we demonstrate that variations in wall temperature rarely affects the density profiles of argon molecules next to the walls. Therefore, in these cases, the variations in thermal resistance at the interface is most dominantly due to wall temperature itself. To analyse the results, the density and temperature profiles and also other parameters including heat flux and temperature gradient of bulk of argon molecules, Kapitza length and argon thermal conductivity are considered. The Kapitza length describes thermal resistance at liquid–solid interface. According to the results, increasing wall–fluid interaction strength leads to greater molecular aggregation of argon molecules near the walls and, consequently, decreasing the Kapitza length. Furthermore, higher fluid density leads to greater thermal resistance at wall–fluid interactions and therefore greater temperature jumps are observed in temperature profiles.  相似文献   

13.
Experiments on the generation of argon K-shell radiation during the implosion of double-shell plasma liners are described. The optimum liner length with respect to the maximum K-shell radiation yield is determined. At a liner current of ~1.4 MA, the conversion efficiency of the generator electric energy into the K-shell radiation energy attains 8–9%. The spectrum of the argon K-shell radiation is measured by a set of photoeission X-ray diodes with different filters (including an argon gas filter). Based on the measurements of the emission power in different spectral intervals and calculations by the collision-radiative model, the ion density and electron temperature of the pinch plasma are estimated.  相似文献   

14.
A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10–4 to 4 × 10–3 Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.  相似文献   

15.
The interaction of 1.07-μm laser radiation with plasma of a continuous optical discharge (COD) in xenon and argon at a pressure of p = 3–25 bar and temperature of T = 15 kK has been studied. The threshold power required to sustain COD is found to decrease with increasing gas pressure to P t < 30 W in xenon at p > 20 bar and to P t < 350 W in argon at p > 15 bar. This effect is explained by an increase in the coefficient of laser radiation absorption to 20?25 cm–1 in Xe and 1?2 cm–1 in Ar due to electronic transitions between the broadened excited atomic levels. The COD characteristics also depend on the laser beam refraction in plasma. This effect can be partially compensated by a tighter focusing of the laser beam. COD is applied as a broadband light source with a high spectral brightness.  相似文献   

16.
An argon plasma produced by a quasi-steady high-energy electron beam was studied experimentally. The plasma density was measured using an open barrel-shaped microwave cavity. The gas temperature was shown to be a few times higher than room temperature. Electron beam propagation, as well as heat-transfer and kinetic processes in plasma, is modeled self-consistently for the actual experimental conditions. It is shown that the plasma density is largely governed by the conversion rate of the atomic ions into molecular ones. The calculated results are compared to the experimental data.  相似文献   

17.
Adult male squirrel monkeys (Saimiri sciureus) were individually chair-restrained in an air-conditioned Styrofoam box in the far field of a horn antenna. Each monkey first received extensive training to regulate the temperature of the air circulating through the box by selecting between 10 and 50 degrees C air source temperatures. Then, to investigate the ability of the animals to utilize microwaves as a source of thermalizing energy, 2450-MHz continuous wave microwaves accompanied by thermoneutral (30 degrees C) air were substituted for the 50 degrees C air. Irradiation at each of three power densities was made available, ie, at 20, 25, and 30 mW/cm2 [SAR = 0.15 (W/kg)/(mW/cm2)]. The percentage of time that the monkeys selected microwave irradiation paired with thermoneutral air averaged 90% at 20 and at 25 mW/cm2. The mean percentage declined reliably (p less than 0.001) to 81% at 30 mW/cm2, confirming the monkey's ability to utilize microwave irradiation as a source of thermal energy during the course of behavioral thermoregulation. All animals readily made the warm-air to microwave-field transition, regulating rectal temperature with precision by sequentially selecting 10 degrees C air, then microwave irradiation accompanied by 30 degrees C air. Although the selection of cooler air resulted in a slight reduction of skin temperatures, normal rectal temperature was maintained. The results indicate that the squirrel monkey can utilize a microwave source in conjunction with convective cooling to regulate body temperature behaviorally.  相似文献   

18.
Rudenko  V. V. 《Plasma Physics Reports》2010,36(13):1247-1254
The problem of laser deposition with allowance for thermal radiation transport inside and outside the laser torch is considered in a multigroup approximation. The energy fluxes of laser torch thermal radiation onto a target in the far and near zones are calculated as functions of time and the character of the exposure. It is shown that absorption of thermal fluxes in the substrate and target in the course of laser deposition results in their substantial heating. The possibility of diagnosing thermal radiation fluxes from the laser torch by using photodetectors is demonstrated.  相似文献   

19.
The most important transport properties of argon have been calculated using classical kinetic theory expressions in conjunction with high-quality ab initio potential energy values computed by Patkowski and Szalewicz. Dilute gas transport properties have been calculated for the viscosity, thermal conductivity, self-diffusion coefficient and thermal diffusion factor from 83 to 10,000 K. Comparisons between experimental transport property data and values presently calculated indicate that the present theoretical predictions may be employed as recommended values for this set of transport properties over a wide temperature range.  相似文献   

20.
The objective of this study was to determine the remarkable role of the microwave power density of argon plasma in the inactivation of Bacillus subtilis, Bacillus stearothermophilus and Bacillus pumilus spores deposited on polypropylene bio‐indicator carriers. In particular, spore survival by argon plasma was determined as a function of the initial spore density of the bio‐indicators. The microwave induced argon plasmas were generated at 1.47, 2.63 and 4.21 w/cm3 microwave power densities under a low gas pressure of 50 Pa at an ambient temperature of 15 °C to reach low temperature distribution of 31, 35 and 43 °C, respectively. Our results indicate that the different Bacillus spores showed distinct degrees of argon plasma sensitivity, and spore survival was significantly reduced when the microwave power density of the plasma treatments was increased. Among the three Bacillus strains, Bacillus subtilis was the most argon plasma resistant, whereas Bacillus stearothermophilus was the most sensitive. However, spore survival was not affected by the initial spore density of the bio‐indicators. Only a certain degree of the spore inactivation log (No/N) from 1.67 to 1.95 was observed despite the 4‐order differences in the initial spore density of the Bacillus pumilus bio‐indicators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号