首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In all 5 acute viral hepatites (AVHs) and chronic viral hepatites (CVHs) there was the increase of erythrocyte activities of glutathione peroxidase (GPx) and glutathione reductase (GR), and the decrease in reduced glutathione (GSH) concentration. In blood plasma there was accumulation of GPx, glutathione S-transferase (GST), and γ-glutamyl transferase (GGT). GSH and GR increased in plasma only in AVHs. Erythrocyte GST increased in CVH C. Evidently changes in the erythrocyte glutathione system represent reactions to oxidative stress and in blood plasma they are consequences of inflammation and hepatocyte cytolysis. Changes were more pronounced in moderate than in severe disease course. These changes have pathogenic importance and can be used in addition to complex diagnostics. These changes significantly differ from the changes found in chronic gall-bladder diseases. It is important to analyze glutathione system separately in erythrocytes and blood plasma and not in the whole blood.  相似文献   

2.
《Free radical research》2013,47(1-2):101-105
The intraperitoneal administration of 3, 10 and 80 mg/Kg isoproterenol produced in the cardiac muscle a dose dependent increase of GSH content and a slight elevation of GSSG content. In addition, the treatment with the catecholamine at the doses of 3 and 10 mg/Kg produced a slight decrease of the mixed glutathione disulfides level, whilst at the dose of 80 mg/Kg, this effect was more pronounced. These changes were not accompanied by modifications of the activities of the enzymes glutathione peroxidase, glutathione reductase and glutathione S-transferase.  相似文献   

3.
The aim of this study was to investigate the effect of desferrioxamine on peroxynitrite-mediated damage in erythrocytes by measuring the 3-nitrotyrosine level and glutathione peroxidase and Na(+)-K(+) ATPase activities in vitro. 3-Nitrotyrosine levels were determined by HPLC; glutathione peroxidase and Na(+)-K(+) ATPase activities were measured by spectrophotometry. Peroxynitrite increased the 3-nitrotyrosine level but decreased both enzyme activities. In the presence of desferrioxamine, glutathione peroxidase activity was increased with a decrease in the 3-nitrotyrosine level. Desferrioxamine was found to possess an important antioxidant activity as assessed in an in vitro system, reducing protein nitration, restoring enzyme activities and maintaining erythrocyte membrane integrity.  相似文献   

4.
We examined the extent of lipid peroxidation and the status of reduced glutathione (GSH) and the GSH‐dependent enzymes—glutathione peroxidase (GPx) and glutathione‐S‐transferase (GST)—in oral tumour tissues from 33 adult oral cancer patients and an equal number of age‐ and sex‐matched normal subjects. Diminished lipid peroxidation in the oral tumour tissue was accompanied by a significant decrease in phospholipids and an increase in the cholesterol/phospholipid (C/P) ratio. The concentration of glutathione and the activities of GPx and GST were elevated in oral tumour tissues. These findings suggest that GSH‐ and GSH‐dependent enzymes play a crucial role in tobacco‐related tumourigenesis and may be considered as markers of carcinogen exposure. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
There have been several conflicting reports as to the scavenging nature of glutathione toward the nitro radical anion of the drug nitrofurantoin. We produced the radical anion enzymatically using the xanthine oxidase/hypoxanthine system at pH 7.4 and pH 9.0 in the presence of various levels of glutathione from 10 to 100 mM and monitored any changes in the radical concentration via electron spin resonance spectroscopy. Independent of glutathione concentration, there was no decrease in the steady-state concentration of the radical. In fact, there was an average 30% increase in the concentration of the radical anion, which suggests enhanced enzyme activity in the presence of glutathione (GSH). These results, together with observations of the effects of glutathione on the stability of the radical anion generated by radiolysis or dithionite, rule out any detectable reaction between the nitrofurantoin radical anion and GSH under physiologically relevant conditions.  相似文献   

6.
Lens wet weights, soluble protein, and activities of γ-glutiamylcysteine synthetase, glutathione synthetase, glutathione peroxidase, and glutathione reductase were determined in primate lenses. The primary sources of lenses were middle-aged adult animals. The Primates, from 23 genera, were categorized into six superfamilies: hominoids (five species), Old World monkeys (seven species), New World monkeys (five species), tarsiers (two species), lemurs (six species), and lorisids (three species). Significant differences between various groups or combinations of groups were noted for γ-glutamylcysteine synthetase, glutathione peroxidase, and glutathione reductase activities. Lenticular γ-glutamylcysteine synthetase activity was very low in the Old World simian lenses and highest in the prosimians. Glutathione peroxidase activity was extraordinarily high in lenses of Old World monkeys. Glutathione reductase activity was low in all the prosimians but tenfold higher in hominoid lenses with intermediate values in monkeys of both the Old World and New World. Glutathione synthetase activity was variable, and no clear pattern which might be useful for primate classification was noted. Lenticular activity ratios of glutathione synthetase:γ-glutamylcysteine synthetase were highest in the Old World simians and lowest in the prosimians. These data with emphasis upon Aotus and the tarsiers were examined with regard to phylogenetic relationships. © 1994 Wiley-Liss, Inc.  相似文献   

7.
A complex study of the blood glutathione system has been carried out for the first time in patients with peptic (gastric and duodenal) ulcer. In erythrocytes and blood plasma of patients with the complicated peptic ulcer and postgastroresection syndromes there was the increase of conjugated dienes (and in the second group the increase in antioxidant activity). Under these conditions the main change was the sharp and identical decrease in glutathione peroxidase activity. In patients with uncomplicated peptic ulcer there was sharp increase in erythrocite and plasma glutathione reductase activity and plasma GSH. In operated but basically healthy patients plasma glutathione peroxidase remained decreased but plasma GSH sharply increased. Evidently complicated peptic ulcer is characterized by decreased functioning of the glutathione system. Activation of this system and the decrease or disappearance of manifestations of oxidative stress are associated with a favorable course of this disease, especially at uncomplicated peptic ulcer. The revealed changes significantly differ from those observed in patients with viral hepatitis, blle excretory diseases and strokes.  相似文献   

8.
Rats were subjected to bilateral carotid artery occlusion for 30 min, followed by reperfusion for varying time periods. The concentration of reduced and oxidized glutathione, glutathione peroxidase and glutathione reductase were determined in whole brain after varying periods of reperfusion. Lipid peroxidation was also assessed by determining the levels of malondialdehyde (MDA) in the brain. Reperfusion for 1 hr following bilateral carotid artery occlusion resulted in significant decrease in total glutathione (GSH) concentration along with small but significant increase in oxidized glutathione (GSSG) levels. After 4 hr of reperfusion, GSH levels recovered, although GSSG levels remained elevated up to 12 hr of reperfusion. Increase in malondialdehyde levels was also detected in the brain up to 12 hr of reperfusion. Glutathione reductase activity remained significantly low up to 144 hr of reperfusion, while glutathione peroxidase activity remained unaffected. These results demonstrate that oxidative stress is generated in the brain during reperfusion following partial ischemia due to bilateral carotid artery occlusion.  相似文献   

9.
Changes in tissue glutathione antioxidant system in streptozotocin-induced diabetic rats for a period of 15 weeks were examined. Total glutathione level was significantly increased in kidney tissue, but were slightly decreased and increased in liver and heart tissues, respectively. The small changes in total glutathione level in the liver and heart, though not statistically significant, were associated with reciprocal alterations in the activity Of -glutamylcysteine synthetase (GCS). While the GCS activity was not changed in kidney tissue, the activity of -glutathione peroxidase was significantly increased in kidney tissue. Insulin treatment could completely or partly normalize almost all of these changes induced by diabetes. However, the decrease in hepatic glutathione S-transferases activity in diabetic rats was not reversed by the insulin treatment. The ensemble of results suggests that the diabetes-induced alterations in tissue glutathione antioxidant system may possibly reflect an inter-organ antioxidant response to a generalized increase in tissue oxidative stress associated with diabetes.Abbreviations AGES advanced glycosylation end-products - EDTA ethylenediamine tetraacetic acid - GCS -glutamylcysteine synthetase - GlyHb glycated hemoglobin - GPX Se-glutathione peroxidase - GRD glutathione reductase - GSH reduced glutathione - GSSG oxidized glutathione - GST glutathione S-transferases - SSA sulfosalicylic acid - STZ streptozotocin  相似文献   

10.
The role that the constituents of the ascorbate–glutathione cycle play in the mechanism of contrasting ozone sensitivities was examined in mature and old tobacco leaves after acute ozone-fumigation (150 p.p.b., 5 h). Levels of the enzyme activities associated with the detoxifying system were lower in ozone-sensitive Bel W3 control plants than in unfumigated ozone-tolerant Bel B plants. In particular, the endogenous activities of ascorbate peroxidase (APX) and glutathione reductase (GR), and the metabolites ascorbic acid (AA) and reduced glutathione (GSH) were more abundant in Bel B than Bel W3 control plants. These results suggest that the higher tolerance of Bel B to O3 is associated with a greater initial content of the antioxidant enzymes or metabolites. Only in the mature leaves of the ozone-tolerant Bel B cv. did fumigation trigger activation of APX and, weakly, of dehydroascorbate reductase (DHAR). The activity of these enzymes was significantly lower after ozone treatment in both mature and old leaves of Bel W3 than in control plants. Fumigation had little effect on the ascorbate content. Its main effects on the glutathione pool were that it boosted the oxidized form and lowered the reduced form, particularly in mature Bel W3 leaves. Extractable GR activity remained unchanged in both Bel B and Bel W3 immediately after fumigation, but increased slightly 24 h later, particularly in mature leaves of Bel W3. Exposure to O3 caused a sharp decline in chloroplastic GR mRNA levels in both cultivars. However, as Western blot analysis failed to detect any major changes in GR protein content at this time, the protein must be highly stable. There is therefore a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as AA and GSH in tobacco. In addition, the degree of inducibility of the system discriminates the two cultivars investigated.  相似文献   

11.
Possible mechanisms of antioxidant activity of glycyrrhizinic acid (GA) were studied. GA did not exhibit antiradical properties in the experiments with stable radical 1,1-diphenyl-2-picrylhydrazyl at the concentration range of 1–100 μM. These data were confirmed by the study of GA effect on luminol chemiluminescence in a cell-free system in the presence of hydrogen peroxide. At the same time, GA decreases (in a dose-dependent manner) the generation of reactive oxygen species by neutrophils activated with both phorbol 12-myristate 13-acetate (PMA) and the chemotactic peptide, N-formyl-Met-Leu-Phe (FMLP). Using dichlorodihydrofluorescein (DCF) fluorescence it has been demonstrated that direct addition of GA to neuron culture did not decrease the level of free radical formation. However, preincubation of cells with GA resulted in the decrease in free radical production rate and increase in reduced intracellular glutathione level.  相似文献   

12.
Summary Barley leaf blade protoplasts accumulate malonaldehyde, a product of lipid peroxidation, during culture. In addition, glutathione levels fall after protoplast isolation and the proportion of glutathione in the oxidized state rises. These data indicate oxidative stress after protoplast isolation and during culture. The cause of this phenomenon is revealed by data showing that the activities of enzymes associated with antioxidative processes including glutathione reductase and ascorbate peroxidase decrease after barley protoplast isolation. In contrast, protoplasts isolated from suspension cultured cells of bromegrass and soybean exhibit little evidence for oxidative stress and increased activities of glutathione reductase and ascorbate peroxidase. We suggest that an antioxidative response is associated with mitosis and colony formation from protoplasts, as exhibited by bromegrass and soybean. Conversely, failure of an antioxidative response is associated with low viability and absence of mitosis, as in barley. Increased viability of barley leaf protoplasts cultured on feeder layer cells is correlated with increased glutathione content and higher glutathione reductase activity.  相似文献   

13.
Zinc is an essential micronutrient for plants, but it is toxic in excess concentrations. In Arabidopsis, additional iron (Fe) can increase Zn tolerance. We isolated a mutant, zinc tolerance induced by iron 1, designated zir1, with a defect in Fe-mediated Zn tolerance. Using map-based cloning and genetic complementation, we identified that zir1 has a mutation of glutamate to lysine at position 385 on γ-glutamylcysteine synthetase (GSH1), the enzyme involved in glutathione biosynthesis. The zir1 mutant contains only 15% of the wild-type glutathione level. Blocking glutathione biosynthesis in wild-type plants by a specific inhibitor of GSH1, buthionine sulfoximine, resulted in loss of Fe-mediated Zn tolerance, which provides further evidence that glutathione plays an essential role in Fe-mediated Zn tolerance. Two glutathione-deficient mutant alleles of GSH1, pad2-1 and cad2-1, which contain 22% and 39%, respectively, of the wild-type glutathione level, revealed that a minimal glutathione level between 22 and 39% of the wild-type level is required for Fe-mediated Zn tolerance. Under excess Zn and Fe, the recovery of shoot Fe contents in pad2-1 and cad2-1 was lower than that of the wild type. However, the phytochelatin-deficient mutant cad1-3 showed normal Fe-mediated Zn tolerance. These results indicate a specific role of glutathione in Fe-mediated Zn tolerance. The induced accumulation of glutathione in response to excess Zn and Fe suggests that glutathione plays a specific role in Fe-mediated Zn tolerance in Arabidopsis. We conclude that glutathione is required for the cross-homeostasis between Zn and Fe in Arabidopsis.  相似文献   

14.
Daunorubicin, an anthracycline antitumor antibiotic, was reduced in the presence of reduced (GSH) or oxidized (GSSG) glutathione to evaluate the possibilities of detoxification or of potentiation of the drug by these compounds. The reductants were .COO free radicals produced by γ radiolysis. In both cases, the final product is 7-deoxydaunomycinone, i.e., the same as without glutathione. The reduction yield is also the same as without GSH or GSSG (0.23 μmol·J−1). No glutathione depletion was observed. Limits for the rate constants of some possible nonenzymatic detoxification reactions are given. To evaluate the possible interactions of daunorubicin with sulfur-containing proteins, the reduction of this drug by .COO free radicals was also studied in the presence of a polypeptide containing two disulfide bridge are, respectively, 0.23 μmol·J−1 7-deoxydaunomycinone. The yields of reduction of the drug and of a protein disulfide bridge are, respectively, 0.23 μmol·J−1 and ≤ 6 nmol·J−1. These values indicate thet disulfide radical anions of the protein can reduce the drug, giving back the disulfide bridge, but that the drug transients niether oxidize nor reduce the protein.  相似文献   

15.
The toxicity of the antineoplastic agent doxorubicin (DOX) has been shown to be moderated by the antioxidant enzyme glutathione peroxidase. It has been reported that acute doses of DOX can cause an inhibition of glutathione peroxidase in cardiac tissue, that may render this tissue especially susceptible to further prooxidant damage. In this study, multiple DOX treatments at a therapeutic dose were assessed for their effect on the antioxidant enzyme status of cardiac and kidney tissue. DOX was administered i.p. (5 mg/kg) once a week for two weeks to male balb/c mice. The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX) and glutathione reductase (GR) were measured 1, 2 and 7 days following the second DOX treatment in both heart and kidney. Levels of reduced glutathione (GSH) were also measured in cardiac tissue at these same times. Cardiac levels of GPOX and GR showed a time-dependent decrease in activity, with 10% and 12% inhibition for GPOX and GR, respectively, at 7 days post second treatment. Cardiac levels of GSH also showed a significant decrease, approximately 15%, at 7 days post second treatment. Cardiac levels of SOD and CAT as well as kidney levels of all four antioxidant enzymes were not affected by DOX treatment. These data suggest that DOX given in a therapeutic regimen, at a therapeutic dose, can cause decreases in cardiac levels of GPOX, GR and GSH that could render the heart especially susceptible to further oxidative challenge.  相似文献   

16.
In addition to glutathione (γ-GluCysGly), many species of the family Poaceae have another tripeptide which has the amino acid sequence γ-GluCysSer. This thiol was isolated from etiolated leaves of wheat (Triticum aestivum L. cv. Star). Its structure was elucidated by quantitative amino acid analysis after total hydrolysis and by partial hydrolysis with carboxypeptidase A and γ-glutamyltranspeptidase. The content of γ-GluCysSer in the leaves of T. aestivum is increased by incubation with sulfate and is severely diminished by incubation with buthionine sulfoximine, a specific inhibitor of γ-glutamylcysteine synthetase. Oxidized γ-GluCysSer is reduced by yeast glutathione reductase with a rate somewhat lower than for glutathione, but the new tripeptide is not a substrate of glutathione-S-transferase from equine liver. Besides homoglutathione (γ-GluCysßAla), a tripeptide found in plants of the order Fabales, the tripeptide γ-GluCysSer is the second homologue of glutathione detected in plants.  相似文献   

17.
谷胱甘肽(GSH)/谷胱甘肽过氧化物酶(GPx)系统在不同微生物细胞抵抗氧胁迫中的生理功能不尽相同。该系统在真核模式微生物酿酒酵母中是必需存在的,在维持胞内氧化还原平衡和抵抗氧胁迫中发挥主要作用。然而,在原核微生物中,该系统只是条件性的,即部分胞内存在谷胱甘肽还原酶和GPx的原核微生物,如流感嗜血杆菌和乳酸乳球菌,可通过从胞外吸收GSH,形成条件性的依赖于GSH的GPx系统,参与抵抗氧胁迫。  相似文献   

18.
Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively; while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin E or an excess of selenium alone in the diet.  相似文献   

19.
《Free radical research》2013,47(4):271-278
The influence of two CNUs with similar alkylating but strongly different carbamoylating activity towards the glutathione system was investigated in different organs. Both CNUs influence the glutathione system of the bone marrow in a similar manner, irrespective of their carbamoylating potential. In contrast, glutathione reductase activity in the other organs was strongly decreased by the potent carbamoylator BCNU, whereas no or only minor effects were produced by its weakly carbamoylating counterpart HECNU.

The results confirm that bone marrow toxicity of CNUs primarily results from alkylation and not from carbamoylation. Other organ-related toxic effects, however, are probably a result of carbamoylating reactions exerted by BCNU. This applies especially to lung toxicity that has been observed frequently as a major side effect in clinical trials with BCNU.  相似文献   

20.
Lipid peroxidation rate in four different hepatomas is quite different and seems to be related to their degree of deviation, low deviation tumours displaying higher peroxidative ability. Moreover, the supernatant of the highly anaplastic Yoshida hepatoma is able to decrease the peroxidation rate in normal liver microsomes. This antioxidant ability is not dependent upon an increased level of glutathione. The concentration of reduced glutathione (GSH) declines strongly during incubation in conditions favouring lipid peroxidation. Unlike normal liver homogenates, this decline of GSH in hepatomas is not due to the transformation of GSH into oxidized glutathione (GSSG) but mostly to the increased activity of the γ-glutamyl-transpeptidase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号