首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Cmk2, a fission yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, is essential for oxidative stress response. Cells lacking cmk2 gene were specifically sensitive to oxidative stress conditions. Upon stress, Cmk2 was phosphorylated in vivo, and this phosphorylation was dependent on the stress-activated MAPK Sty1/Spc1. Co-precipitation assays demonstrated that Cmk2 binds Sty1. Furthermore, in vivo or in vitro activated Sty1 was able to phosphorylate Cmk2, and the phosphorylation occurred at the C-terminal regulatory domain at Thr-411. Cell lethality caused by overexpression of Wis1 MAPK kinase was abolished by deletion of cmk2 or by mutation of Thr-411 of Cmk2. Taken together, our data suggest that Cmk2 acts downstream of Sty1 and is an essential kinase for oxidative stress responses.  相似文献   

2.
3.
To investigate the cell cycle checkpoint response to aberrant S phase-initiation, we analyzed mutations of the two DNA primase subunit genes of Schizosaccharomyces pombe, spp1(+) and spp2(+) (S. pombe primase 1 and 2). spp1(+) encodes the catalytic subunit that synthesizes the RNA primer, which is then utilized by Polalpha to synthesize the initiation DNA. Here, we reported the isolation of the fission yeast spp1(+) gene and cDNA and the characterization of Spp1 protein and its cellular localization during the cell cycle. Spp1 is essential for cell viability, and thermosensitive mutants of spp1(+) exhibit an allele-specific abnormal mitotic phenotype. Mutations of spp1(+) reduce the steady-state cellular levels of Spp1 protein and compromised the formation of Polalpha-primase complex. The spp1 mutant displaying an aberrant mitotic phenotype also fails to properly activate the Chk1 checkpoint kinase, but not the Cds1 checkpoint kinase. Mutational analysis of Polalpha has previously shown that activation of the replication checkpoint requires the initiation of DNA synthesis by Polalpha. Together, these have led us to propose that suboptimal cellular levels of polalpha-primase complex due to the allele-specific mutations of Spp1 might not allow Polalpha to synthesize initiation DNA efficiently, resulting in failure to activate a checkpoint response. Thus, a functional Spp1 is required for the Chk1-mediated, but not the Cds1-mediated, checkpoint response after an aberrant initiation of DNA synthesis.  相似文献   

4.
5.
A gene encoding a polypeptide of 25 kDa is located immediately upstream of the gene for ribosomal protein S1, rpsA. In high gene copy number, this gene, mssA, was previously found to suppress defects in smbA, which is now known to be identical to pyrH, encoding UMP kinase. We show here that the 25-kDa polypeptide comprises CMP kinase and propose that the gene be designated cmk. In a strain deleted for cmk, the pools of CMP and dCMP were elevated approximately 30-fold. We constructed a plasmid from which synthesis of CMP kinase was regulated by the lac promoter-operator and measured the synthesis rates for RNA and DNA after induction in the delta cmk/lacPO-cmk+ strain. A specific increase in the rate of DNA synthesis was observed. Further analyses showed that the replication elongation rate was halved in the delta cmk strain, most likely caused by the reductions of the dCTP and dTTP pools to 30 and 70%, respectively, of the levels in the parental strain, but that this was compensated for by a doubling in the frequency of initiation. The delta cmk strain is viable at 37 degrees C but cold sensitive. The cold sensitivity may be related to defects in the synthesis of phospholipids or lipopolysaccharides. In addition to the physiological studies, the region upstream of cmk was sequenced, and 120 codons with strong homology to an uncharacterized protein of the speB operon were identified.  相似文献   

6.
DNA damage checkpoints lead to the inhibition of cell cycle progression following DNA damage. The Saccharomyces cerevisiae Mec1 checkpoint protein, a phosphatidylinositol kinase-related protein, is required for transient cell cycle arrest in response to DNA damage or DNA replication defects. We show that mec1 kinase-deficient (mec1kd) mutants are indistinguishable from mec1Delta cells, indicating that the Mec1 conserved kinase domain is required for all known Mec1 functions, including cell viability and proper DNA damage response. Mec1kd variants maintain the ability to physically interact with both Ddc2 and wild-type Mec1 and cause dominant checkpoint defects when overproduced in MEC1 cells, impairing the ability of cells to slow down S phase entry and progression after DNA damage in G(1) or during S phase. Conversely, an excess of Mec1kd in MEC1 cells does not abrogate the G(2)/M checkpoint, suggesting that Mec1 functions required for response to aberrant DNA structures during specific cell cycle stages can be separable. In agreement with this hypothesis, we describe two new hypomorphic mec1 mutants that are completely defective in the G(1)/S and intra-S DNA damage checkpoints but properly delay nuclear division after UV irradiation in G(2). The finding that these mutants, although indistinguishable from mec1Delta cells with respect to the ability to replicate a damaged DNA template, do not lose viability after UV light and methyl methanesulfonate treatment suggests that checkpoint impairments do not necessarily result in hypersensitivity to DNA-damaging agents.  相似文献   

7.
Several signal transduction pathways, including mitogen-activated protein kinase (MAPK) pathways, are involved in appressorium development in Colletotrichum orbiculare, the causal agent of cucumber anthracnose disease. In this study, CoMEKK1, a yeast MAPK kinases (MAPKK) kinase STE11 homolog, was identified as a disrupted gene in an Agrobacterium tumefaciens-mediated transformation mutant. The phenotype of comekk1 disruptant was similar to that of cmk1, a Saccharomyces cerevisiae Fus3/Kss1 MAPK homolog mutant. Moreover, comekk1 and cmk1 mutants were sensitive to high osmotic and salinity stresses, indicating that Comekk1p/Cmk1p signal transduction is involved in stress tolerance. The transformants of the wild type and the comekk1 mutant expressing a constitutively active form of the CoMEKK1 showed slower hyphal growth and abnormal appressorium formation, whereas those of the cmk1 disruptant did not. A Cmk1p-green fluorescent protein (GFP) intracellular localization experiment indicated that nuclear localization of the Cmk1p-GFP fusion protein induced by salt stress was diminished in comekk1 mutants. These results indicate that Comekk1p functions upstream of Cmk1p.  相似文献   

8.
The minichromosome maintenance (MCM) complex, a replicative helicase, is a heterohexamer essential for DNA duplication and genome stability. We identified Schizosaccharomyces pombe mcb1(+) (Mcm-binding protein 1), an apparent orthologue of the human MCM-binding protein that associates with a subset of MCM complex proteins. mcb1(+) is an essential gene. Deletion of mcb1(+) caused cell cycle arrest after several generations with a cdc phenotype and disrupted nuclear structure. Mcb1 is an abundant protein, constitutively present across the cell cycle. It is widely distributed in cytoplasm and nucleoplasm and bound to chromatin. Co-immunoprecipitation suggested that Mcb1 interacts robustly with Mcm3-7 but not Mcm2. Overproduction of Mcb1 disrupted the association of Mcm2 with other MCM proteins, resulting in inhibition of DNA replication, DNA damage, and activation of the checkpoint kinase Chk1. Thus, Mcb1 appears to antagonize the function of MCM helicase.  相似文献   

9.
Budding yeast Dpb11 (human TopBP1, fission yeast Cut5) is an essential protein required for replisome assembly and for the DNA damage checkpoint. Previous studies with the temperature-sensitive dpb11-1 allele, truncated at amino acid 583 of the 764-amino acid protein, have suggested the model that Dpb11 couples DNA replication to the replication checkpoint. However, the dpb11-1 allele shows distinct replication defects even at permissive temperatures. Here, we determine that the 1-600-amino acid domain of DPB11 is both required and sufficient for full replication function of Dpb11 but that this domain is defective for activation of the principal checkpoint kinase Mec1 (human ataxia telangiectasia and Rad3-related) in vitro and in vivo. Remarkably, mutants of DPB11 that leave its replication function intact but abrogate its ability to activate Mec1 are proficient for the replication checkpoint, but they are compromised for the G(2)/M DNA damage checkpoint. These data suggest that replication checkpoint defects may result indirectly from defects in replisome assembly. Two conserved aromatic amino acids in the C terminus of Dpb11 are critical for Mec1 activation in vitro and for the G(2)/M checkpoint in yeast. Together with aromatic motifs identified previously in the Ddc1 subunit of 9-1-1, another activator of Mec1 kinase, they define a consensus structure for Mec1 activation.  相似文献   

10.
11.
We report here the isolation and functional analysis of the rfc3(+) gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3(+) gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3(+) is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor.  相似文献   

12.
13.
Bloom's syndrome (BS) is a human genetic disorder associated with cancer predisposition. The BS gene product, BLM, is a member of the RecQ helicase family, which is required for the maintenance of genome stability in all organisms. In budding and fission yeasts, loss of RecQ helicase function confers sensitivity to inhibitors of DNA replication, such as hydroxyurea (HU), by failure to execute normal cell cycle progression following recovery from such an S-phase arrest. We have examined the role of the human BLM protein in recovery from S-phase arrest mediated by HU and have probed whether the stress-activated ATR kinase, which functions in checkpoint signaling during S-phase arrest, plays a role in the regulation of BLM function. We show that, consistent with a role for BLM in protection of human cells against the toxicity associated with arrest of DNA replication, BS cells are hypersensitive to HU. BLM physically associates with ATR (ataxia telangiectasia and rad3(+) related) protein and is phosphorylated on two residues in the N-terminal domain, Thr-99 and Thr-122, by this kinase. Moreover, BS cells ectopically expressing a BLM protein containing phosphorylation-resistant T99A/T122A substitutions fail to adequately recover from an HU-induced replication blockade, and the cells subsequently arrest at a caffeine-sensitive G(2)/M checkpoint. These abnormalities are not associated with a failure of the BLM-T99A/T122A protein to localize to replication foci or to colocalize either with ATR itself or with other proteins that are required for response to DNA damage, such as phosphorylated histone H2AX and RAD51. Our data indicate that RecQ helicases play a conserved role in recovery from perturbations in DNA replication and are consistent with a model in which RecQ helicases act to restore productive DNA replication following S-phase arrest and hence prevent subsequent genomic instability.  相似文献   

14.
15.
Kiely J  Haase SB  Russell P  Leatherwood J 《Genetics》2000,154(2):599-607
orp2 is an essential gene of the fission yeast Schizosaccharomyces pombe with 22% identity to budding yeast ORC2. We isolated temperature-sensitive alleles of orp2 using a novel plasmid shuffle based on selection against thymidine kinase. Cells bearing the temperature-sensitive allele orp2-2 fail to complete DNA replication at a restrictive temperature and undergo cell cycle arrest. Cell cycle arrest depends on the checkpoint genes rad1 and rad3. Even when checkpoint functions are wild type, the orp2-2 mutation causes high rates of chromosome and plasmid loss. These phenotypes support the idea that Orp2 is a replication initiation factor. Selective spore germination allowed analysis of orp2 deletion mutants. These experiments showed that in the absence of orp2 function, cells proceed into mitosis despite a lack of DNA replication. This suggests either that the Orp2 protein is a part of the checkpoint machinery or more likely that DNA replication initiation is required to induce the replication checkpoint signal.  相似文献   

16.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

17.
Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. Exposure of yeast to osmostress activates the Hog1 SAPK, which modulates cell cycle progression at G1 and G2 by the phosphorylation of elements of the cell cycle machinery, such as Sic1 and Hsl1, and by down-regulation of G1 and G2 cyclins. Here, we show that upon stress, Hog1 also modulates S phase progression. The control of S phase is independent of the S phase DNA damage checkpoint and of the previously characterized Hog1 cell cycle targets Sic1 and Hsl1. Hog1 uses at least two distinct mechanisms in its control over S phase progression. At early S phase, the SAPK prevents firing of replication origins by delaying the accumulation of the S phase cyclins Clb5 and Clb6. In addition, Hog1 prevents S phase progression when activated later in S phase or cells containing a genetic bypass for cyclin-dependent kinase activity. Hog1 interacts with components of the replication complex and delays phosphorylation of the Dpb2 subunit of the DNA polymerase. The two mechanisms of Hog1 action lead to delayed firing of origins and prolonged replication, respectively. The Hog1-dependent delay of replication could be important to allow Hog1 to induce gene expression before replication.  相似文献   

18.
Cells that suffer substantial inhibition of DNA replication halt their cell cycle via a checkpoint response mediated by the PI3 kinases ATM and ATR. It is unclear how cells cope with milder replication insults, which are under the threshold for ATM and ATR activation. A third PI3 kinase, DNA-dependent protein kinase (DNA-PK), is also activated following replication inhibition, but the role DNA-PK might play in response to perturbed replication is unclear, since this kinase does not activate the signaling cascades involved in the S-phase checkpoint. Here we report that mild, transient drug-induced perturbation of DNA replication rapidly induced DNA breaks that promptly disappeared in cells that contained a functional DNA-PK whereas such breaks persisted in cells that were deficient in DNA-PK activity. After the initial transient burst of DNA breaks, cells with a functional DNA-PK did not halt replication and continued to synthesize DNA at a slow pace in the presence of replication inhibitors. In contrast, DNA-PK deficient cells subject to low levels of replication inhibition halted cell cycle progression via an ATR-mediated S-phase checkpoint. The ATM kinase was dispensable for the induction of the initial DNA breaks. These observations suggest that DNA-PK is involved in setting a high threshold for the ATR-Chk1-mediated S-phase checkpoint by promptly repairing DNA breaks that appear immediately following inhibition of DNA replication.  相似文献   

19.
Delay of cell cycle progression in response to double-strand DNA breaks (DSBs) is critical to allow time for DNA repair and prevent cellular transformation. Here, we show that the p38 mitogen-activated protein (MAP) kinase signaling pathway is activated in immature thymocytes along with TcRbeta gene V(D)J recombination. Active p38 MAP kinase promotes a G2/M cell cycle checkpoint through the phosphorylation and activation of p53 in these cells in vivo. Inactivation of p38 MAP kinase and p53 is required for DN3 thymocytes to exit the G2/M checkpoint, progress through mitosis and further differentiate. We propose that p38 MAP kinase is activated by V(D)J-mediated DSBs and induces a p53-mediated G2/M checkpoint to allow DNA repair and prevent cellular transformation.  相似文献   

20.
Mec1 (ATR in humans) is the principal kinase responsible for checkpoint activation in response to replication stress and DNA damage in Saccharomyces cerevisiae. Checkpoint initiation requires stimulation of Mec1 kinase activity by specific activators. The complexity of checkpoint initiation in yeast increases with the complexity of chromosomal states during the different phases of the cell cycle. In G1 phase, the checkpoint clamp 9–1–1 is both necessary and sufficient for full activation of Mec1 kinase whereas in G2/M, robust checkpoint function requires both 9–1–1 and the replisome assembly protein Dpb11 (human TopBP1). A third activator, Dna2, is employed specifically during S phase to stimulate Mec1 kinase and to initiate the replication checkpoint. Dna2 is an essential nuclease–helicase that is required for proper Okazaki fragment maturation, for double-strand break repair, and for protecting stalled replication forks. Remarkably, all three Mec1 activators use an unstructured region of the protein, containing two critically important aromatic residues, in order to activate Mec1. A role for these checkpoint activators in channeling aberrant replication structures into checkpoint complexes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号