首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Given the ease of whole genome sequencing with next-generation sequencers, structural and functional gene annotation is now purely based on automated prediction. However, errors in gene structure are frequent, the correct determination of start codons being one of the main concerns. Here, we combine protein N termini derivatization using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP Ac-OSu) as a labeling reagent with the COmbined FRActional DIagonal Chromatography (COFRADIC) sorting method to enrich labeled N-terminal peptides for mass spectrometry detection. Protein digestion was performed in parallel with three proteases to obtain a reliable automatic validation of protein N termini. The analysis of these N-terminal enriched fractions by high-resolution tandem mass spectrometry allowed the annotation refinement of 534 proteins of the model marine bacterium Roseobacter denitrificans OCh114. This study is especially efficient regarding mass spectrometry analytical time. From the 534 validated N termini, 480 confirmed existing gene annotations, 41 highlighted erroneous start codon annotations, five revealed totally new mis-annotated genes; the mass spectrometry data also suggested the existence of multiple start sites for eight different genes, a result that challenges the current view of protein translation initiation. Finally, we identified several proteins for which classical genome homology-driven annotation was inconsistent, questioning the validity of automatic annotation pipelines and emphasizing the need for complementary proteomic data. All data have been deposited to the ProteomeXchange with identifier PXD000337.Recent developments in mass spectrometry and bioinformatics have established proteomics as a common and powerful technique for identifying and quantifying proteins at a very broad scale, but also for characterizing their post-translational modifications and interaction networks (1, 2). In addition to the avalanche of proteomic data currently being reported, many genome sequences are established using next-generation sequencing, fostering proteomic investigations of new cellular models. Proteogenomics is a relatively recent field in which high-throughput proteomic data is used to verify coding regions within model genomes to refine the annotation of their sequences (28). Because genome annotation is now fully automated, the need for accurate annotation for model organisms with experimental data is crucial. Many projects related to genome re-annotation of microorganisms with the help of proteomics have been recently reported, such as for Mycoplasma pneumoniae (9), Rhodopseudomonas palustris (10), Shewanella oneidensis (11), Thermococcus gammatolerans (12), Deinococcus deserti (13), Salmonella thyphimurium (14), Mycobacterium tuberculosis (15, 16), Shigella flexneri (17), Ruegeria pomeroyi (18), and Candida glabrata (19), as well as for higher organisms such as Anopheles gambiae (20) and Arabidopsis thaliana (4, 5).The most frequently reported problem in automatic annotation systems is the correct identification of the translational start codon (2123). The error rate depends on the primary annotation system, but also on the organism, as reported for Halobacterium salinarum and Natromonas pharaonis (24), Deinococcus deserti (21), and Ruegeria pomeroyi (18), where the error rate is estimated above 10%. Identification of a correct translational start site is essential for the genetic and biochemical analysis of a protein because errors can seriously impact subsequent biological studies. If the N terminus is not correctly identified, the protein will be considered in either a truncated or extended form, leading to errors in bioinformatic analyses (e.g. during the prediction of its molecular weight, isoelectric point, cellular localization) and major difficulties during its experimental characterization. For example, a truncated protein may be heterologously produced as an unfolded polypeptide recalcitrant to structure determination (25). Moreover, N-terminal modifications, which are poorly documented in annotation databases, may occur (26, 27).Unfortunately, the poor polypeptide sequence coverage obtained for the numerous low abundance proteins in current shotgun MS/MS proteomic studies implies that the overall detection of N-terminal peptides obtained in proteogenomic studies is relatively low. Different methods for establishing the most extensive list of protein N termini, grouped under the so-called “N-terminomics” theme, have been proposed to selectively enrich or improve the detection of these peptides (2, 28, 29). Large N-terminome studies have recently been reported based on resin-assisted enrichment of N-terminal peptides (30) or terminal amine isotopic labeling of substrates (TAILS) coupled to depletion of internal peptides with a water-soluble aldehyde-functionalized polymer (3135). Among the numerous N-terminal-oriented methods (2), specific labeling of the N terminus of intact proteins with N-tris(2,4,6-trimethoxyphenyl)phosphonium acetyl succinamide (TMPP-Ac-OSu)1 has proven reliable (21, 3639). TMPP-derivatized N-terminal peptides have interesting properties for further LC-MS/MS mass spectrometry: (1) an increase in hydrophobicity because of the trimethoxyphenyl moiety added to the peptides, increasing their retention times in reverse phase chromatography, (2) improvement of their ionization because of the introduction of a positively charged group, and (3) a much simpler fragmentation pattern in tandem mass spectrometry. Other reported approaches rely on acetylation, followed by trypsin digestion, and then biotinylation of free amino groups (40); guanidination of lysine lateral chains followed by N-biotinylation of the N termini and trypsin digestion (41); or reductive amination of all free amino groups with formaldehyde preceeding trypsin digestion (42). Recently, we applied the TMPP method to the proteome of the Deinococcus deserti bacterium isolated from upper sand layers of the Sahara desert (13). This method enabled the detection of N-terminal peptides allowing the confirmation of 278 translation initiation codons, the correction of 73 translation starts, and the identification of non-canonical translation initiation codons (21). However, most TMPP-labeled N-terminal peptides are hidden among the more abundant internal peptides generated after proteolysis of a complex proteome, precluding their detection. This results in disproportionately fewer N-terminal validations, that is, 5 and 8% of total polypeptides coded in the theoretical proteomes of Mycobacterium smegmatis (37) and Deinococcus deserti (21) with a total of 342 and 278 validations, respectively.An interesting chromatographic method to fractionate peptide mixtures for gel-free high-throughput proteome analysis has been developed over the last years and applied to various topics (43, 44). This technique, known as COmbined FRActional DIagonal Chromatography (COFRADIC), uses a double chromatographic separation with a chemical reaction in between to change the physico-chemical properties of the extraneous peptides to be resolved from the peptides of interest. Its previous applications include the separation of methionine-containing peptides (43), N-terminal peptide enrichment (45, 46), sulfur amino acid-containing peptides (47), and phosphorylated peptides (48). COFRADIC was identified as the best method for identification of N-terminal peptides of two archaea, resulting in the identification of 240 polypeptides (9% of the theoretical proteome) for Halobacterium salinarum and 220 (8%) for Natronomonas pharaonis (24).Taking advantage of both the specificity of TMPP labeling, the resolving power of COFRADIC for enrichment, and the increase in information through the use of multiple proteases, we performed the proteogenomic analysis of a marine bacterium from the Roseobacter clade, namely Roseobacter denitrificans OCh114. This novel approach allowed us to validate and correct 534 unique proteins (13% of the theoretical proteome) with TMPP-labeled N-terminal signatures obtained using high-resolution tandem mass spectrometry. We corrected 41 annotations and detected five new open reading frames in the R. denitrificans genome. We further identified eight distinct proteins showing direct evidence for multiple start sites.  相似文献   

2.
A quick isolation and identification of N‐blocked peptides from protein digest mixtures were achieved by diisothiocyanate or isothiocyanate‐coupled magnetic nanoparticles and MS. After protein digests were guanidinated and then mixed with diisothiocyanate or isothiocyanate‐coupled magnetic nanoparticles, unmodified N‐terminal peptides were covalently bound to magnetic nanoparticles, and can be removed from the mixture under magnetic field. Therefore, N‐blocked peptides could be isolated and analyzed by MALDI or ESI MS. This new strategy was demonstrated with model peptides, proteins, and the lysates of HepG2 cells.  相似文献   

3.
Recombinant protein expression and purification remains a central need for biotechnology. Herein, the authors report a streamlined protein and peptide purification strategy using short self‐assembling peptides and a C‐terminal cleavage intein. In this strategy, the fusion protein is first expressed as an aggregate induced by the self‐assembling peptide. Upon simple separation, the target protein or peptide with an authentic N‐terminus is then released in the solution by intein‐mediated cleavage. Different combinations of four self‐assembling peptides (ELK16, L6KD, FK and FR) with three inteins (Sce VMA, Mtu ΔI‐CM and Ssp DnaB) were explored. One protein and two peptides were used as model polypeptides to test the strategy. The intein Mtu ΔI‐CM, which has pH‐shift inducible cleavage, was found to work well with three self‐assembling peptides (L6KD, FR, FK). Using this intein gave a yield of protein or peptide comparable with that from other more established strategies, such as the Trx‐strategy, but in a simpler and more economical way. This strategy provides a simple and efficient method by which to prepare proteins and peptides with an authentic N‐terminus, which is especially effective for peptides of 30‐100 amino acids in length that are typically unstable and susceptible to degradation in Escherichia coli.  相似文献   

4.
Human protein C (hPC) is glycosylated at three Asn‐X‐Ser/Thr and one atypical Asn‐X‐Cys sequons. We have characterized the micro‐ and macro‐heterogeneity of plasma‐derived hPC and compared the glycosylation features with recombinant protein C (tg‐PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N‐glycans of hPC are complex di‐ and tri‐sialylated structures, and we measured 78% site occupancy at Asn‐329 (the Asn‐X‐Cys sequon). The N‐glycans of tg‐PC are complex sialylated structures, but less branched and partially sialylated. The porcine mammary epithelial cells glycosylate the Asn‐X‐Cys sequon with a similar efficiency as human hepatocytes even at these high expression levels, and site occupancy at this sequon was not affected by expression level. A distinct bias for particular structures was present at each of the four glycosylation sites for both hPC and tg‐PC. Interestingly, glycans with GalNAc in the antennae were predominant at the Asn‐329 site. The N‐glycan structures found for tg‐PC are very similar to those reported for a recombinant Factor IX produced in transgenic pig milk, and similar to the endogenous milk protein lactoferrin, which may indicate that N‐glycan processing in the porcine mammary epithelial cells is more uniform than in other tissues.  相似文献   

5.
Tandem MS (MS2) quantification using the series of N‐ and C‐terminal fragment ion pairs generated from isobaric‐labelled peptides was recently considered an accurate strategy in quantitative proteomics. However, the presence of multiplexed terminal fragment ion in MS2 spectra may reduce the efficiency of peptide identification, resulting in lower identification scores or even incorrect assignments. To address this issue, we developed a quantitative software tool, denoted isobaric tandem MS quantification (ITMSQ), to improve N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantification. A spectrum splitting module was designed to separate the MS2 spectra from different samples, increasing the accuracy of both identification and quantification. ITMSQ offers a convenient interface through which parameters can be changed along with the labelling method, and the result files and all of the intermediate files can be exported. We performed an analysis of in vivo terminal amino acid labelling labelled HeLa samples and found that the numbers of quantified proteins and peptides increased by 13.64 and 27.52% after spectrum splitting, respectively. In conclusion, ITMSQ provides an accurate and reliable quantitative solutionfor N‐ and C‐terminal fragment ion pairs based isobaric MS2 quantitative methods.  相似文献   

6.
The protein tyrosine phosphatase SHP‐1 plays an important role in many physiological and pathophysiological processes. This phosphatase is activated through binding of ligands to its SH2‐domains, mainly to the N‐terminal one. Based on a theoretical docking model, backbone‐to‐side chain cyclized octapeptides were designed as ligands. Assembly of such modelled structures required the synthesis of N‐functionalized tyrosine derivatives and their incorporation into the sequence. Because of difficulties encountered in the condensation of N‐protected amino acids to the N‐alkylated tyrosine‐peptide we synthesized and used preformed dipeptide building units. As all attempts to obtain phosphorylated dipeptide units failed, the syntheses had to be performed with a free phenolic function. Use of different N‐alkyl or cycloalkyl residues in the N‐functionalized side chains allowed to investigate the effect of ring size, flexibility and hydrophobicity of formed lactam bridges on stimulatory activity. All tested linear and cyclic octapeptides stimulate the phosphatase activity of SHP‐1. Stimulatory activities of cyclic ligands increase with the chain length of the lactam bridges resulting in increased flexibility and better entropic preformation of the binding conformation. The strong activity of some cyclic octapeptides supports the modelled structure. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
This work reports an efficient Lewis acid catalysed N‐methylation procedure of lipophilic α‐amino acid methyl esters in solution phase. The developed methodology involves the use of the reagent system AlCl3/diazomethane as methylating agent and α‐amino acid methyl esters protected on the amino function with the (9H‐fluoren‐9‐yl)methanesulfonyl (Fms) group. The removal of Fms protecting group is achieved under the same conditions to those used for Fmoc removal. Thus the Fms group can be interchangeable with the Fmoc group in the synthesis of N‐methylated peptides using standard Fmoc‐based strategies. Finally, the absence of racemization during the methylation reaction and the removal of Fms group were demonstrated by synthesising a pair of diastereomeric dipeptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
In search for novel biologically active metal based compounds, an evaluation of in vitro cytotoxic, antioxidant, and antimicrobial activity of new Pt(II) complex and its Zn(II), Cu(II), and Co(III) analogues, with NNO tridentately coordinated N‐heteroaromatic Schiff base ligand (E)‐2‐[N′‐(1‐pyridin‐2‐yl‐ethylidene)hydrazino]acetate, was performed. Investigation of antioxidative properties showed that all of the compounds have strong radical scavenging potencies. The Zn(II) complex showed potent inhibition of DNA cleavage by hydroxyl radical. A cytotoxic action of investigated compounds was evaluated on cultures of human promyelocitic leukaemia (HL‐60), human glioma (U251), rat glioma (C6), and mouse melanoma (B16) cell lines. It was shown that binuclear pentacoordinated Zn(II) complex possesses a strong dose‐dependent cytotoxic activity, of the same order of magnitude as cisplatin on B16, C6, and U251 cells. Furthermore, Zn(II) complex causes oxidative stress‐induced apoptotic death of HL‐60 leukemic cells, associated with caspase activation, phosphatidylserine externalization, and DNA fragmentation.  相似文献   

9.
To establish a strategy for the comprehensive identification of human N‐myristoylated proteins, the susceptibility of human cDNA clones to protein N‐myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell‐free protein synthesis system. One‐hundred‐and‐forty‐one cDNA clones with N‐terminal Met‐Gly motifs were selected as potential candidates from ~2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N‐myristoylation was evaluated using fusion proteins, in which the N‐terminal ten amino acid residues were fused to an epitope‐tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N‐myristoylated. The metabolic labeling experiments both in an insect cell‐free protein synthesis system and in the transfected COS‐1 cells using full‐length cDNA revealed that 27 out of 29 proteins were in fact N‐myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N‐myristoylated proteins that have not been reported previously to be N‐myristoylated, indicating that this strategy is useful for the comprehensive identification of human N‐myristoylated proteins from human cDNA resources.  相似文献   

10.
The present study describes modification of asparagine–glycine–arginine (NGR) peptide at N‐terminally and C‐terminally by introduction of a tridentate chelating scaffold via click chemistry reaction. The N‐terminal and C‐terminal modified peptides were radiometalated with [99mTc(CO)3]+ precursor. The influence of these moieties at the two termini on the targeting properties of NGR peptide was determined by in vitro cell uptake studies and in vivo biodistribution studies. The two radiolabeled constructs did not exhibit any significant variation in uptake in murine melanoma B16F10 cells during in vitro studies. In vivo studies revealed nearly similar tumor uptake of N‐terminally modified peptide construct 5 and C‐terminally construct 6 at 2 h p.i. (1.9 ± 0.1 vs 2.4 ± 0.2% ID/g, respectively). The tumor‐to‐blood (T/B) and tumor‐to‐liver (T/L) ratios of the two radiometalated peptides were also quite similar. The two constructs cleared from all the major organs (heart, lungs, spleen, stomach, and blood) at 4 h p.i. (<1% ID/g). Blocking studies carried out by coinjection of cCNGRC peptide led to approximately 50% reduction in the tumor uptake at 2 h p.i. This work thus illustrates the possibility of convenient modification/radiometalation of NGR peptide at either N‐ or C‐terminus without hampering tumor targeting and pharmacokinetics.  相似文献   

11.
[Ni(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 1 ) and [Co(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 2 ) are synthesized and characterized by elemental analysis, FT‐IR spectra, magnetic susceptibility, and thermal analysis. In addition, the crystal structure of Ni(II) complex is presented. Both complexes show distorted octahedral geometry. In 1 and 2, metal ions are coordinated by two oxygen atoms of salicylic residue and two nitrogen atoms of maleic amide residue from two ligands, and two oxygen atoms from two water molecules. In this paper, both compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I, and II, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compounds 1 and 2 had Ki values of 18.36 ± 4.38 and 26.61 ± 7.54 nM against hCA I and 13.81 ± 3.02 and 29.56 ± 6.52 nM against hCA II, respectively. On the other hand, their Ki values were found to be 487.45 ± 54.18 and 453.81 ± 118.61 nM against AChE and 199.21 ± 50.35 and 409.41 ± 6.86 nM against BChE, respectively.  相似文献   

12.
We report here a rapid and sensitive technique for negative visualization of protein in 1D and 2D SDS‐PAGE by using 2′, 7′‐dichlorofluorescein (DCF), which appeared as transparent and colorless bands in an opaque gel matrix background. For DCF stain, down to 0.1–0.2 ng protein could be easily visualized within 7 min by only two steps, and the staining is fourfold more sensitive than that of Eosin Y (EY) negative stain and glutaraldehyde (GA) silver stain, and eightfold more sensitive than that of the commonly used imidazole‐zinc (IZ) negative stain. Furthermore, DCF stain provided good reproducibility, linearity, and MS compatibility compared with those of IZ stain. In addition, the potential staining mechanism was investigated by colorimetric experiment and molecular docking, and the results demonstrated that the interaction between DCF and protein occurs mainly via van der waals force, electrostatic interaction, and hydrogen bonding.  相似文献   

13.
The presence of aminoacylase activities was investigated in a crude extract of Streptomyces ambofaciens ATCC23877. First activities catalyzing the hydrolysis of N‐α or ε‐acetyl‐L‐lysine were identified. Furthermore, the acylation of lysine and different peptides was studied and compared with results obtained with lipase B of Candida antarctica (CALB). Different regioselectivities were demonstrated for the two classes of enzymes. CALB was able to catalyze acylation only on the ε‐position whereas the crude extract from S. ambofaciens possessed the rare ability to catalyze the N‐acylation on the α‐position of the lysine or of the amino‐acid in N‐terminal position of peptides. Two genes, SAM23877_1485 and SAM23877_1734, were identified in the genome of Streptomyces ambofaciens ATCC23877 whose products show similarities with the previously identified aminoacylases from Streptomyces mobaraensis. The proteins encoded by these two genes were responsible for the major aminoacylase hydrolytic activities. Furthermore, we show that the hydrolysis of N‐α‐acetyl‐L‐lysine could be attributed to the product of SAM23877_1734 gene.  相似文献   

14.
15.
16.
A new trinickel(II) complex bridged by N‐[3‐(dimethylamino)propyl]‐ N ′‐(2‐hydroxylphenyl)oxamido (H3pdmapo), namely [Ni3(pdmapo)2(H2O)2]?4CH3OH, was synthesized and characterized by X‐ray single‐crystal diffraction and other methods. In the molecule, two symmetric cis‐ pdmapo3? mononickel(II) complexes as a “complex ligand” using the carbonyl oxygen atoms coordinate to the center nickel(II) ion situated on an inversion point. The Ni···Ni distance through the oxamido bridge is 5.2624(4) Å. The center nickel(II) ion and the lateral ones have octahedral and square‐planar coordination geometries, respectively. In the crystal, a three‐dimensional supramolecular network dominated by hydrogen bonds is observed. The reactivity toward DNA/protein bovine serum albumin (BSA) revealed that the complex could interact with herring sperm DNA (HS‐DNA) through the intercalation mode and quench the intrinsic fluorescence of BSA via a static mechanism. The in vitro anticancer activities suggested that the complex is active against the selected tumor cell lines.  相似文献   

17.
A new sensitive quaternary photoluminescence enhancement system has been successfully developed to determine trace amounts of Eu3+ and Zn2+. The photoluminescence intensity of Eu ? N‐(o‐vanilin)‐1,8‐diaminonaphthalene systems was greatly increased by the addition of specific concentrations of 1, 10‐phenanthroline and Zn2+. The excitation and emission wavelengths were 274 and 617 nm, respectively. Under optimal system conditions, the photoluminescence intensity showed a linear response toward Eu3+ in the range of 5.0 × 10–6 ~ 2.0 × 10–5 M with a limit of detection (= 2.2 × 10–9 M) and the photoluminescence intensity of the system decreased linearly by increasing the Zn2+ concentration in the range of 5.0 × 10–8 ~ 1.0 × 10–6 M with a limit of detection (= 8.8 × 10–11 M). This system was successfully applied for the determination of trace amounts of Eu3+ in a high purity La2O3 matrix and in the synthetic rare earth oxide mixture, and of Zn2+ in a high purity Mg(NO3)2 · 6H2O matrix and in synthetic coexisting ionic matrixes. The energy transfer mechanism, photoluminescence enhancement of the system and interference of other lanthanide ions and common coexisting ions were also studied in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The β2‐AR (β2‐adrenergic receptor) is an important target for respiratory and CVD (cardiovascular disease) medications. Clinical studies suggest that N‐terminal polymorphisms of β2‐AR may act as disease modifiers. We hypothesized that polymorphisms at amino acids 16 and 27 result in differential trafficking and down‐regulation of β2‐AR variants following β‐agonist exposure. The functional consequences of the four possible combinations of these polymorphisms in the human β2‐AR (designated β2‐AR‐RE, β2‐AR‐GE, β2‐AR‐RQ and β2‐AR‐GQ) were studied using site‐directed mutagenesis and recombinant expression in HEK‐293 cells (human embryonic kidney cells). Ligand‐binding assays demonstrated that after 24 h exposure to 1 μM isoprenaline, isoforms with Arg162‐AR‐RE and β2‐AR‐RQ) underwent increased down‐regulation compared with isoforms with Gly162‐AR‐GE and β2‐AR‐GQ). Consistent with these differences in down‐regulation between isoforms, prolonged isoprenaline treatment resulted in diminished cAMP response to subsequent isoprenaline challenge in β2‐AR‐RE relative to β2‐AR‐GE. Confocal microscopy revealed that the receptor isoforms had similar co‐localization with the early endosomal marker EEA1 following isoprenaline treatment, suggesting that they had similar patterns of internalization. None of the isoforms exhibited significant co‐localization with the recycling endosome marker Rab11 in response to isoprenaline treatment. Furthermore, we found that prolonged isoprenaline treatment led to a higher degree of co‐localization of β2‐AR‐RE with the lysosomal marker LAMP1 (lysosome‐associated membrane protein 1) compared with that of β2‐AR‐GE. Taken together, these results indicate that a mechanism responsible for differential responses of these receptor isoforms to the β‐agonist involves differences in the efficiency with which agonist‐activated receptors are trafficked to the lysosomes for degradation, or differences in degradation in the lysosomes.  相似文献   

19.
20.
Carbazole and its derivatives have been widely utilized as a functional building block in the fabrication of the organic medicine, pesticides, materials, etc., because of their excellent solubility, stability and biological activity. In this paper, 1‐(5‐carboxypentyl)‐4‐(2‐(N‐ethyl‐carbazole‐3‐yl) vinyl) pyridinium bromide with a large Stokes shift was synthesized and characterized by 1H NMR and MS. The UV/vis absorption and fluorescence spectra in different solvents and at different pH values were investigated preliminarily. The photostability and thermostability were also studied and the results showed that the compound was stable. The compound was also used to label bovine serum albumin (BSA) and calf thymus (ct)DNA. The results showed that the fluorescence intensity is enhanced when labeling with BSA and the binding ability is stronger than ctDNA, making it may be used as a biological probe. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号