首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of versatile vaccine platforms is a priority that is recognized by health authorities worldwide; such platforms should induce both arms of the immune system, the humoral and cytotoxic-T-lymphocyte responses. In this study, we have established that a vaccine platform based on the coat protein of papaya mosaic virus (PapMV CP), previously shown to induce a humoral response, can induce major histocompatibility complex (MHC) class I cross-presentation of HLA-A*0201 epitopes from gp100, a melanoma antigen, and from influenza virus M1 matrix protein. PapMV proteins were able to assemble into stable virus-like particles (VLPs) in a crystalline and repetitive structure. When we pulsed HLA-A*0201+ antigen-presenting cells (APCs) with the recombinant PapMV FLU or gp100, we noted that antigen-specific CD8+ T cells were highly reactive to these APCs, demonstrating that the epitope from the VLPs were processed and loaded on the MHC class I complex. APCs were preincubated with two different proteasome inhibitors, which did not affect the efficiency of peptide presentation on MHC class I. Classical presentation from an endogenous antigen was abolished in the same conditions. Clearly, antigen presentation mediated by the PapMV system was proteasome independent. Finally, PapMV-pulsed APCs had the capacity to expand highly avid antigen-specific T cells against the influenza virus M1 HLA-A*0201 epitope when cocultured with autologous peripheral blood mononuclear cells. This study demonstrates the potential of PapMV for MHC class I cross-presentation and for the expansion of human antigen-specific T cells. It makes VLPs from PapMV CP a very attractive platform to trigger cellular responses for vaccine development against chronic infectious diseases and cancers.  相似文献   

2.
Oncogenic transformation in human and experimental animals is not necessarily followed by the appearance of a tumor mass. The immune system of the host can recognize tumor antigens by the presentation of small antigenic peptides to the receptor of cytotoxic T-lymphocytes (CTLs) and reject the nascent tumor. However, cancer cells can sometimes escape these specific T-cell immune responses in the course of somatic (genetic and phenotypic) clonal evolution. Among the tumor immune escape mechanisms described to date, the alterations in the expression of major histocompatibility complex (MHC) molecules play a crucial step in tumor development due to the role of MHC antigens in antigen presentation to T-lymphocytes and the regulation of natural killer cell (NK) cell function. In this work, we have (1) updated information on the mechanisms that allow CTLs to recognize tumor antigens after antigen processing by transformed cells, (2) described the altered MHC class I phenotypes that are commonly found in human tumors, (3) summarized the molecular mechanisms responsible for MHC class I alteration in human tumors, (4) provided evidence that these altered human leukocyte antigens (HLA) class I phenotypes are detectable as result of a T-cell immunoselection of HLA class I-deficient variants by an immunecompetent host, and (5) presented data indicating the MHC class I phenotype and the immunogenicity of experimental metastatic tumors change drastically when tumors develop in immunodeficient mice.  相似文献   

3.
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.  相似文献   

4.
The expression of class I and class II HLA antigens on preparations of human endothelial cells, isolated from umbilical cord veins, was investigated by immunofluorescence. While virtually all endothelial cells expressed class I antigens, less than 1% were positive for class II antigens, as detected with a panel of 10 different monoclonal antibodies. Antigen specific T cell lines proliferated in response to mumps antigen in the presence of endothelial cells or blood monocytes from HLA-DR matched donors. However, these T cell lines failed to respond in the absence of accessory cells or when accessory cells from HLA-D-region mismatched cord donors were used. The ability of both monocytes and endothelial cells to present antigen was abolished by treatment of the cells with monoclonal antibodies specific for either class I or class II HLA antigens plus complement. Similar treatment with monoclonal antibodies specific for monocytes greatly reduced antigen presentation by endothelial cells. These results indicate that preparations of endothelial cells contain a subpopulation of Ia positive cells, distinct from monocytes, which are required for antigen presentation.  相似文献   

5.
We have developed cell-based cancer vaccines that activate anti-tumor immunity by directly presenting endogenously synthesized tumor antigens to CD4+ T helper lymphocytes via MHC class II molecules. The vaccines are non-conventional antigen-presenting cells because they express MHC class II, do not express invariant chain or H-2M, and preferentially present endogenous antigen. To further improve therapeutic efficacy we have studied the intracellular trafficking pathway of MHC class II molecules in the vaccines using endoplasmic reticulum-localized lysozyme as a model antigen. Experiments using endocytic and cytosolic pathway inhibitors (chloroquine, primaquine, and brefeldin A) and protease inhibitors (lactacystin, LLnL, E64, and leupeptin) indicate antigen presentation depends on the endocytic pathway, although antigen degradation is not mediated by endosomal or proteasomal proteases. Because H2-M facilitates presentation of exogenous antigen via the endocytic pathway, we investigated whether transfection of vaccine cells with H-2M could potentiate endogenous antigen presentation. In contrast to its role in conventional antigen presentation, H-2M had no effect on endogenous antigen presentation by vaccine cells or on vaccine efficacy. These results suggest that antigen/MHC class II complexes in the vaccines may follow a novel route for processing and presentation and may produce a repertoire of class II-restricted peptides different from those presented by professional APC. The therapeutic efficacy of the vaccines, therefore, may reside in their ability to present novel tumor peptides, consequently activating tumor-specific CD4+ T cells that would not otherwise be activated.  相似文献   

6.
Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/− glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo response to a cancer related tumor antigen, Balb/c or B6.Cg(CB)-Tg(HLA-A/H2-D)2Enge/J (HLA-A2 transgenic) mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-γ release, and antibody induction. GalNAc-glycosylation promoted presentation of OVA-MUC1 fusion peptides by MHC class II molecules and the MUC1 antigen elicited specific Ab production and T cell proliferation in both Balb/c and HLA-A2 transgenic mice. In contrast, GalNAc-glycosylation inhibited the presentation of OVA-MUC1 fusion peptides by MHC class I and abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells.  相似文献   

7.
Schmid D  Münz C 《Autophagy》2007,3(2):133-135
The adaptive immune system is orchestrated by CD4+ T cells. These cells detect peptides presented on Major Histocompatibility Complex (MHC) class II molecules, which are loaded in late endosomes with products of lysosomal proteolysis. One pathway by which proteins gain access to degradation in lysosomes is macroautophagy. We recently showed that constitutive macroautophagy can be detected in cells relevant for the immune system, including dendritic cells. In these antigen presenting cells, autophagosomes frequently fused with MHC class II antigen loading compartments and targeting of Influenza matrix protein 1 (MP1) for macroautophagy enhanced MHC class II presentation to MP1-specific CD4+ T cell clones up to 20 fold. Our findings indicate that macroautophagy is a constitutive and efficient pathway of antigen delivery for MHC class II presentation. We suggest that this pathway samples intracellular proteins for immune surveillance and induction of tolerance in CD4+ T cells, and could be targeted for improved MHC class II presentation of vaccine antigens.  相似文献   

8.
9.
A successful HIV vaccine in addition to induction of antibody responses should elicit effective T cell responses. Here we described possible strategies for rational design of T-cell vaccine capable to induce high levels of both CD4+ and CD8+ T- cell responses. We developed artificial HIV-1 polyepitope T-cell immunogens based on the conserved natural CD8+ and CD4+ T cell epitopes from different HIV-1 strains and restricted by the most frequent major human leukocyte antigen (HLA) alleles. Designed immunogens contain optimized core polyepitope sequence and additional “signal” sequences which increase epitope processing and presentation to CD8+ and CD4+ T-lymphocytes: N-terminal ubiquitin, N-terminal signal peptide and C-terminal tyrosine motif of LAMP-1 protein. As a result we engineered three T cell immunogens – TCI-N, TCI-N2, and TCI-N3, with different combinations of signal sequences. All designed immunogens were able to elicit HIV-specific CD4+ and CD8+ T cell responses following immunization. Attachment of either ubiquitin or ER-signal/LAMP-1 sequences increased both CD4+ and CD8+ mediated HIV-specific T cell responses in comparison with polyepitope immunogen without any additional signal sequences. Moreover, TCI-N3 polyepitope immunogen with ubiquitin generated highest magnitude of HIV-specific CD4+ and CD8+ T cell responses in our study. Obtained data suggests that attachment of signal sequences targeting polyepitope immunogens to either MHC class I or MHC class II presentation pathways may improve immunogenicity of T-cell vaccines. These results support the strategy of the rational T cell immunogen design and contribute to the development of effective HIV-1 vaccine.  相似文献   

10.
The complete annotation of the cattle genome allows reliable protein identification by tandem mass spectrometry (MS(2)) and greatly facilitates proteomics. Previously, we reported that differential detergent fractionation (DDF) analysis of bovine monocytes reveals proteins related to antigen pattern recognition, uptake and presentation to immunocompetent lymphocytes. Here we have identified 47 bovine proteins, involved in immune function of professional antigen-presenting cells (APC) that have been significantly altered after cytopathic (cp) Bovine Viral Diarrhea Virus (BVDV) infection. In particular, proteins related to immune responses such as cell adhesion, apoptosis, antigen uptake, processing and presentation, acute phase response proteins, MHC class I- and II-related proteins and other molecules involved in immune function of professional antigen presentation have been significantly altered after BVDV infection. Our data suggest that cp BVDV, while promoting monocyte activation and differentiation, is inhibiting their antigen presentation to immunocompetent T cells, thus resulting in the uncontrolled inflammation mediated by activated macrophages, enhanced viral spread, and impaired anti-viral defense mechanisms in the host.  相似文献   

11.
Human peripheral blood lymphocytes heated at 45 degrees C for 1 hr were found to continue to express all the serologically detected class II MHC antigens (HLA DR, MT, MB) but not to stimulate proliferation in primary or secondary MLR. Such cells did, however, stimulate the formation of potent suppressor cells. Three additional stimulator cell models for the presentation of either class I antigen only (purified platelets and purified T cells) or class I antigen plus nonimmunogenic class II antigen (D/DR-compatible cells) gave identical results. Supernatants from cultures stimulated with any of these cell types had significantly reduced IL 2 activity when compared to control MLR. The suppressor cells generated in such cultures were not restricted to the class I or class II MHC antigen of the original stimulator. These data are interpreted to mean that 1) the class II epitopes detected by alloantisera and the epitopes that serve as lymphocyte-activating determinants are metabolically or conformationally distinct, and 2) that presentation of class I MHC antigen alone or in conjunction with nonimmunogenic class II MHC antigen preferentially stimulates the formation of suppressor cells. It is hypothesized that the latter may be an additional mechanism that contributes to the efficacy of matching for class II determinants in human renal transplantation.  相似文献   

12.
We studied the mechanisms of antigen presentation of CD4 T cell epitopes of the capsular Caf1 antigen of Yersinia pestis using murine bone marrow macrophages as antigen presenting cells and T cell hybridomas specific for major histocompatibility complex (MHC) class II-restricted epitopes distributed throughout the Caf1 sequence. The data revealed diversity in the pathways used and the degrees of antigen processing required depending on the structural context of epitopes within the Caf1 molecule. Two epitopes in the carboxyl-terminal globular domain were presented by newly synthesized MHC class II after low pH-dependent lysosomal processing, whereas an epitope located in a flexible amino-terminal strand was presented by mature MHC class II independent of low pH and with no detectable requirement for proteolytic processing. A fourth epitope located between the two regions of Caf1 showed intermediate behavior. The data are consistent with progressive unfolding and cleavage of rCaf1 from the amino terminus as it traverses the endosomal pathway, the availability of epitopes determining which pool of MHC class II is preferentially loaded. The Caf1 capsular protein is a component of second generation plague vaccines and an understanding of the mechanisms and pathways of MHC class II-restricted presentation of multiple epitopes from this candidate vaccine antigen should inform the choice of delivery systems and adjuvants that target vaccines successfully to appropriate intracellular locations to induce protective immune responses against as wide a T cell repertoire as possible.  相似文献   

13.
Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation.  相似文献   

14.
15.
Hepatitis B virus core antigen (HBcAg) plays a critical role in terminating acute Hepatitis B virus infection and may be used as a potential vaccine candidate. The cell surface major histocompatibility complex (MHC) class 1 molecules are thought to be involved in the presentation of HBcAg. Surface MHC class 1 HLA A2 heavy chain (HC) and trimeric molecules were characterized on transfected Hela cells used as antigen presenting cells (APC) for the presentation of HBcAg. The results show that antibodies against HC HLA A2 and trimeric HLA-A2 molecules resulted in increased activation of HBcAg 18-27 minimal peptide specific cytotoxic T lymphocytes (CTLs), while the addition of exogenous beta2-microglobulin decreased the activation of HBcAg specific CTLs. Further, specific CD8+ T cells were activated only when Hela cells as APCs were primed with HBcAg (peptide, soluble or embedded on virosomes) at pH 6.5.  相似文献   

16.
Virus-associated malignancies are potential targets for immunotherapeutic vaccines aiming to stimulate T-cell responses against viral antigens expressed in tumor cells. Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma, a high-incidence tumor in southern China, expresses a limited set of EBV proteins, including the nuclear antigen EBNA1, an abundant source of HLA class II-restricted CD4(+) T-cell epitopes, and the latent membrane protein LMP2, a source of subdominant CD8(+) T-cell epitopes presented by HLA class I alleles common in the Chinese population. We used appropriately modified gene sequences from a Chinese EBV strain to generate a modified vaccinia virus Ankara recombinant, MVA-EL, expressing the CD4 epitope-rich C-terminal domain of EBNA1 fused to full-length LMP2. The endogenously expressed fusion protein EL is efficiently processed via the HLA class I pathway, and MVA-EL-infected dendritic cells selectively reactivate LMP2-specific CD8(+) memory T-cell responses from immune donors in vitro. Surprisingly, endogenously expressed EL also directly accesses the HLA class II presentation pathway and, unlike endogenously expressed EBNA1 itself, efficiently reactivates CD4(+) memory T-cell responses in vitro. This unscheduled access to the HLA class II pathway is coincident with EL-mediated redirection of the EBNA1 domain from its native nuclear location to dense cytoplasmic patches. Given its immunogenicity to both CD4(+) and CD8(+) T cells, MVA-EL has potential as a therapeutic vaccine in the context of nasopharyngeal carcinoma.  相似文献   

17.
18.
Cytotoxic CD8(+) T lymphocytes kill infected cells that display major histocompatibility complex (MHC) class I molecules presenting peptides processed from pathogen proteins. In general, the peptides are proteolytically processed from newly made endogenous antigens in the cytosol and require translocation to the endoplasmic reticulum (ER) for MHC class I loading. This last task is performed by the transporters associated with antigen processing (TAP). Sampling of suspicious pathogen-derived proteins reaches beyond the cytosol, and MHC class I loading can occur in other secretory or endosomal compartments besides the ER. Peptides processed from exogenous antigens can also be presented by MHC class I molecules to CD8(+) T lymphocytes, in this case requiring delivery from the extracellular medium to the processing and MHC class I loading compartments. The endogenous or exogenous antigen can be processed before or after its transport to the site of MHC class I loading. Therefore, mechanisms that allow the full-length protein or processed peptides to cross several subcellular membranes are essential. This review deals with the different intracellular pathways that allow the traffic of antigens to compartments proficient in processing and loading of MHC class I molecules for presentation to CD8(+) T lymphocytes and highlights the need to molecularly identify the transporters involved.  相似文献   

19.
Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general.  相似文献   

20.
The class I molecules encoded by the major histocompatibility complex (MHC) present endogenously synthesized antigenic peptide fragments to cytotoxic T lymphocytes. We show here that these proteins are an essential component of the cell surface receptor for simian virus 40 (SV40). First, SV40 binding to cells can be blocked by two monoclonal antibodies against class I human lymphocyte antigen (HLA) proteins but not by monoclonal antibodies specific for other cell surface proteins. Second, SV40 does not bind to cells of two different human lymphoblastoid cell lines which do not express surface class I MHC proteins because of genetic defects in the beta 2-microglobulin gene in one line and in the HLA complex in the other. Transfection of these cell lines with cloned genes for beta 2-microglobulin and HLA-B8, respectively, restored expression of their surface class I MHC proteins and resulted in concomitant SV40 binding. Finally, SV40 binds to purified HLA proteins in vitro and selectively binds to class I MHC proteins in a cell surface extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号