首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During pregnancy, up‐regulation of heparin‐binding (HB‐) EGF and cyclooxygenase‐2 (COX‐2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G‐protein‐coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA‐producing enzyme autotaxin (ATX) in pregnant mice leads to HB‐EGF and COX‐2 down‐regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up‐regulation of HB‐EGF and COX‐2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre‐implantation‐stage embryos, respectively. Our results indicate that ATX–LPA–LPA3 signaling at the embryo‐epithelial boundary induces decidualization via the canonical HB‐EGF and COX‐2 pathways.  相似文献   

2.
Our early study has found valproic acid (VPA)‐induced lipid dysmetabolism in animal model, however, the details of lipid profiling of VPA‐treated epileptic patients remain unknown. Therefore, in this study, the blood samples of VPA‐treated epileptic patients and VPA‐free controls were collected for lipidomic and biochemical assays. As results, clinical data showed the changes of some blood lipid molecules in VPA‐treated epileptic patients. In lipidomic assays, all 3797 annotated positive ions were identified prior to the data validation. In addition, the number of differentially expressed lipids were identified. And the 133 lipid molecules in VPA‐treated cases were significantly up‐regulated when compared to those in controls, while other 250 lipid metabolites were down‐regulated. Further, these lipid metabolites were mainly constituted with glycerolipids, glycerophopholipids, fatty acyls, sterol lipids. In addition, the most significant elevations of metabolite molecules of triglyceride, sphingomyelin, phosphorylcholine, ceramides, phenolic phthiocerol, as well as topped reductions of phosphoethanolamines, diradylglycerols, 1α,25‐dihydroxy‐24‐oxo‐22‐oxavitamin D3, 2‐deoxy‐20‐hydroxy‐5alpha‐ecdysone 3‐acetate, dolichyl‐4 phosphate were identified respectively. Taken together, these clinical findings demonstrate that negative impacts of exposure to VPA on expression of lipid mediators, progressively disrupting the functions of lipid molecules. Interestingly, these differentially expressed metabolites may be potential biomarkers for screening VPA‐induced dyslipidemia.  相似文献   

3.
4.
Caprylic acid (CAP) is anticipated to be a potential biocontrol herbicide in the control of weeds, however the molecular mechanism of how CAP affects weeds is poorly understood. Here, the physiological and biochemical (protein‐level) changes in horseweed (Conyza canadensis L.) are studied under CAP treatment, with infrared gas analyzer and label‐free quantitative proteomics methods. In total, 112 differentially‐accumulated proteins (DAPs) (>1.5 fold change, p < 0.05) are present between treated horseweed and control samples, with 46 up‐regulated and 66 down‐regulated proteins. These DAPs are involved in 28 biochemical pathways, including photosynthesis pathways. In particular, six photosynthesis proteins show significant abundance changes in the CAP‐treated horseweed. The qRT‐PCR results confirm three of the six genes involved in photosynthesis. Moreover, by measuring photosynthesis characteristics, CAP was shown to decrease photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and the transpiration rate of horseweed. These results suggest that photosystem I is one of the main biological processes involved in the response of horseweed to CAP.  相似文献   

5.
Acute liver failure (ALF) caused by hepatitis B virus (HBV) is common type of liver failure in the world, with high morbidity and mortality rates. However, the prevalence, genetic background and factors determining the development of HBV‐related ALF are rarely studied. In this study, we examined three Gene Expression Omnibus (GEO) data sets by bioinformatics analysis to identify differentially expressed genes (DEGs), key biological processes and pathways. Immune infiltration analysis showed high immune cells infiltration in HBV‐related ALF tissue. We then confirmed natural killer cells and macrophages infiltration in clinical samples by immunohistochemistry assay, implying these cells play a significant role in HBV‐ALF. We found 1277 genes were co‐up‐regulated and that 1082 genes were co‐down‐regulated in the 3 data sets. Inflammation‐related pathways were enriched in the co‐up‐regulated genes and synthetic metabolic pathways were enriched in the co‐down‐regulated genes. WGCNA also revealed a key module enriching in immune inflammation response and identified 10 hub genes, differentially expressed in an independent data set. In conclusion, we identified fierce immune inflammatory response to elucidate the immune‐driven mechanism of HBV‐ALF and 10 hub genes based on gene expression profiles.  相似文献   

6.
7.
8.
Transforming growth factor (TGF)‐β and activin, members of TGF‐β superfamily, are abundantly expressed in the endometrium and regulate decidualization of endometrial stroma. Smad2 and Smad3 are receptor‐regulated Smads (R‐Smads) that transduce extracellular TGF‐β/activin/Nodal signaling. In situ hybridization results showed that Smad3 was highly expressed in the decidual zone during the peri‐implantation period in mice. By using artificial decidualization, we found that Smad3 null mice showed partially compromised decidualization. We therefore hypothesized that Smad2 might compensate for the function of Smad3 during the process of decidualization. Smad2 was also highly expressed in the decidual zone and phosphorylated Smad2 was much more abundantly increased in the deciduoma of Smad3 null mice than for wild‐type (WT) mice. We further employed an in vitro uterine stromal cell decidualization model, and found that decidual prolactin‐related protein (dPRP) and cyclin D3, which are well‐known markers for decidual cells, were significantly down‐regulated in Smad3 null decidual cells, and were much more significantly reduced when the expression of Smad2 was simultaneously silenced by its siRNA (P < 0.05). However, the expression levels of dPRP and cyclin D3 remained the same when Smad2 was silenced in WT decidual cells. Collectively, these findings provide evidence for an important role of Smad3 in decidualization and suggest that Smad2 and Smad3 may have redundant roles in decidualization. J. Cell. Biochem. 113: 3266–3275, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Partial desiccation treatment (PDT) stimulates germination and enhances the conversion of conifer somatic embryos. To better understand the mechanisms underlying the responses of somatic embryos to PDT, we used proteomic and physiological analyses to investigate these responses during PDT in Picea asperata. Comparative proteomic analysis revealed that, during PDT, stress‐related proteins were mainly involved in osmosis, endogenous hormones, antioxidative proteins, molecular chaperones and defence‐related proteins. Compared with those in cotyledonary embryos before PDT, these stress‐related proteins remained at high levels on days 7 (D7) and 14 (D14) of PDT. The proteins that differentially accumulated in the somatic embryos on D7 were mapped to stress and/or stimuli. They may also be involved in the glyoxylate cycle and the chitin metabolic process. The most significant difference in the differentially accumulated proteins occurred in the metabolic pathways of photosynthesis on D14. Furthermore, in accordance with the changes in stress‐related proteins, analyses of changes in water content, abscisic acid, indoleacetic acid and H2O2 levels in the embryos indicated that PDT is involved in water‐deficit tolerance and affects endogenous hormones. Our results provide insight into the mechanisms responsible for the transition from morphologically mature to physiologically mature somatic embryos during the PDT process in P. asperata.  相似文献   

10.
Prokineticin 1 (PROK1), a hypoxia‐regulated angiogenic factor, has emerged as a crucial regulator of embryo implantation and placentation. Dysregulation of PROK1 has been linked to recurrent pregnancy loss, pre‐eclampsia, foetal growth restriction and preterm birth. These pregnancy complications are common in women with obesity and polycystic ovary syndrome, i.e. conditions associated with insulin resistance and compensatory hyperinsulinaemia. We investigated the effect of insulin on PROK1 expression during in vitro decidualization. Endometrial stromal cells were isolated from six healthy, regularly menstruating women and decidualized in vitro. Insulin induced a significant dose‐dependent up‐regulation of PROK1 on both mRNA and protein level in decidualizing endometrial stromal cells. This up‐regulation was mediated by hypoxia‐inducible factor 1‐alpha (HIF1α) via the phosphatidylinositol 3‐kinase (PI3K) pathway. Furthermore, we demonstrated that PROK1 did not affect the viability, but significantly inhibited the migration of endometrial stromal cells and the migratory and invasive capacity of trophoblast cell lines. This in vitro study provides new insights into the regulation of PROK1 by insulin in human decidualizing endometrial stromal cells, the action of PROK1 on migration of endometrial stromal cells, as well as migration and invasion of trophoblasts. We speculate that hyperinsulinaemia may be involved in the mechanisms by which PROK1 is linked to placenta‐related pregnancy complications.  相似文献   

11.
12.
Vitrification is becoming a preferred method for pre‐implantation embryo cryopreservation. The objective of this study was to determine the differentially expressed genes of in vivo‐ and in vitro‐produced bovine embryos after vitrification. In vitro‐ (IVF) and in vivo‐derived (IVV) bovine blastocysts were identified as follows: in vitro‐produced fresh (IVF‐F), in vitro‐produced vitrified (IVF‐V), in vivo‐derived fresh (IVV‐F), in vivo‐derived vitrified (IVV‐V). The microarray results showed that 53 genes were differentially regulated between IVF and IVV, and 121 genes were differentially regulated between fresh and vitrified blastocysts (P < 0.05). There were 6, 268, 962, and 17 differentially regulated genes between IVF‐F × IVV‐F, IVF‐V × IVV‐V, IVF‐F × IVF‐V, and IVV‐F × IVV‐V, respectively (P < 0.05). While gene expression was significantly different between fresh and vitrified IVF blastocysts (P < 0.05), it was similar between fresh and vitrified IVV blastocysts. Significantly up‐regulated KEGG pathways included ribosome, oxidative phosphorylation, spliceosome, and oocyte meiosis in the fresh IVF blastocyst samples, while sphingolipid and purine metabolisms were up‐regulated in the vitrified IVF blastocyst. The results showed that in vitro bovine blastocyst production protocols used in this study caused no major gene expression differences compared to those of in vivoproduced blastocysts. After vitrification, however, in vitro‐produced blastocysts showed major gene expression differences compared to in vivo blastocysts. This study suggests that in vitro‐produced embryos are of comparable quality to their in vivo counterparts. Vitrification of in vitro blastocysts, on the other hand, causes significant up‐regulation of genes that are involved in stress responses. Mol. Reprod. Dev. 79: 613–625, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
16.
17.
Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non‐biassed metabolomics approach to identify many novel herbivory‐regulated metabolic signatures in rice. Most were up‐regulated by herbivore attack while only a few were suppressed. Two of the most prominent up‐regulated signatures were characterized as phenolamides (PAs), p‐coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p‐coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.  相似文献   

18.
19.
Dove tree (Davidia involucrata), a tertiary vestige species, is well-adapted to cool conditions. Dormancy in D. involucrata seed lasts for an extremely long period of time, typically between 3 and 4 years, and this characteristic makes the species an excellent model for studying the mechanisms of seed dormancy. The molecular mechanisms governing germination control in D. involucrata are still unknown. Seed stratification have been reported to enhance germination in recalcitrant seeds. We performed a widely targeted metabolome profiling to identify metabolites and associated pathways in D. involucrata seeds from six different moist sand stratification durations (0–30 months) using the ultra-high-performance liquid chromatography-Q Exactive Orbitrap-Mass spectrometry. There was an increasing germination rate with prolonged stratification durations (12–30 months). Furthermore, we detected 10,008 metabolites in the stratified seeds. We also detected 48 differentially accumulated metabolites (DAMs) between all stratification periods in the seeds, with 10 highly conserved metabolites. Most of the differentially accumulated metabolites between unstratified and stratified seeds were enriched in purine metabolism, pyrimidine metabolism, flavone and flavonol biosynthesis, phenylpropanoid biosynthesis, and arginine biosynthesis pathways. Key phytohormones, abscisic acid, indole-3 acetic acid, and sinapic acid were differentially accumulated in the seeds and are predicted to regulate dormancy in D. involucrata. We have provided extensive metabolic information useful for future works on dove tree germination study.  相似文献   

20.
Endometrial stromal cells from rat uteri differentially sensitized for the decidual cell reaction in vivo and which undergo differing degrees of decidualization in vitro were cultured and plasminogen activator (PA) in the medium determined. The cells were obtained by enzymatic dispersion from the uteri of ovariectomized, steroid-treated rats at the equivalent of day 4, 5, or 6 of pseudopregnancy or on day 5 from rats treated on day 4 with 0, 0.3, or 1.0 μg estradiol (low, intermediate, or high dose of estradiol, respectively) and cultured for 24, 48, or 72 hr. For cells from day 4, 5, and 6 uteri cultured under control conditions, PA activity in the medium was greatest for day 5 cells, which were from uteri maximally sensitized for decidualization both in vivo and in vitro. By contrast, for cells from low-, intermediate-, and high-estradiol uteri, PA activity in the medium was greatest for the high-estradiol cells; these cells do not undergo decidualization in vivo or in vitro to the same extent as intermediate-estradiol cells. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, reduced PGE2 accumulation to nondetectable amounts and for most cultures decreased PA activity in the medium, suggesting that endogenous PG production regulated in part PA secretion under control conditions. The addition of PGE2 with indomethacin increased PA activities above those under control conditions, but activities were still lower for day 4 and 6 cells compared with day 5 cells, and for low- and intermediate-estradiol cells compared with high-estradiol cells. This indicates that the differences in PA secretion are not explainable by differences in PGE2 production. Northern blot analysis of RNA from cells cultured for 72 hr under control conditions did not reveal significant differences in steady-state concentrations of mRNA for urokinase-type PA or plasminogen activator inhibitor 1, but those for tissue-type PA were lower in day 6 cells compared with day 4 and 5 cells. It is concluded that PA activity secreted by the cultured endometrial stromal cells, although controlled in part by the endocrine milieu to which they were exposed prior to culture, does not simulate decidualization in vitro and, therefore, that PA activity is not a marker for decidualization in vitro. Mol. Reprod. Dev. 49:268–276, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号