首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated exposure to drugs of abuse causes time-dependent neuroadaptive changes in the mesocorticolimbic system of the brain that are considered to underlie the expression of major behavioral characteristics of drug addiction. We used a 2-D gel-based proteomics approach to examine morphine-induced temporal changes in protein expression and/or PTM in the nucleus accumbens (NAc) of morphine-sensitized rats. Rats were pretreated with saline [1 mL/kg subcutaneously (s.c.)] or morphine (10 mg/kg, s.c.) once daily for 14 days and the animals were decapitated 1 day later. The NAc was extracted and proteins resolved by 2-DE. Several protein functional groups were found to be regulated in the morphine-treated group, representing cytoskeletal proteins, proteins involved in neurotransmission, enzymes involved in energy metabolism and protein degradation, and a protein that regulates translation.  相似文献   

2.
Single proteins, when analyzed with 2-D-PAGE, often show multiple spots due to PTMs. In gels of human body fluids, the spot patterns facilitate the assignment and identification of the proteins. We analyzed serums from patients with congenital disorders of glycosylation (CDG) in which glycoproteins are strongly impacted and exhibit highly distinguishable spot patterns compared to healthy controls. We detected a typical protein pattern for alpha1-acid glycoprotein (AGP) and transferrin (Trf) that are markers for CDG. AGP contains five glycosylation sites which results in a complex microheterogeneity of the glycoprotein. On the other hand, in Trf, a glycoprotein with only two glycosylation sites, mainly biantennary complex-type-N-linked glycans are bound. We used 2-D-PAGE, MALDI-TOF-MS, and ESI-MS for the analysis of these glycoproteins and their corresponding glycans. In AGP, the heterogenic glycosylation of the different glycosylation sites is responsible for the complex spot pattern. In contrast to AGP, the protein spots of Trf cannot be explained by glycosylation. We found strong evidence that oxidation of cysteine is responsible for the spot pattern. This study contradicts the commonly accepted assumption that the multiple protein spots of Trf observed in 2-D-PAGE are due, as in AGP, to the glycosylation of the protein.  相似文献   

3.
Sickle cell disease (SCD) is a hemolytic disorder caused by a mutation in beta‐globin gene and affects millions of people worldwide. Though clinical manifestations of the disease are quite heterogeneous, many of them occur due to erythrocyte sickling at reduced oxygen concentration and vascular occlusion mediated via blood cell adhesion to the vessel wall. We have followed proteomic approach to resolve the differentially regulated proteins of erythrocyte cytosol. The deregulated proteins mainly fall in the group of chaperone proteins such as heat shock protein 70, alpha hemoglobin stabilizing protein, and redox regulators such as aldehyde dehydrogenase and peroxiredoxin‐2 proteoforms. Proteasomal subunits are found to be upregulated and phospho‐catalase level also got altered. Severe oxidative stress inside erythrocyte is evident from the ROS analysis and OxyblotTM experiments. Peroxiredoxin‐2 shows significant dimerization in the SCD patients, a hallmark of oxidative stress inside erythrocytes. One interesting fact is that most of the differentially regulated proteins are also common for hemoglobinopathies such as Eβ thalassemia. These could provide important clues in understanding the pathophysiology of SCD and lead us to better patient management in the future.  相似文献   

4.
Qiu Y  Kathariou S  Lubman DM 《Proteomics》2006,6(19):5221-5233
Bacterial cold adaptation in Exiguobacterium sibiricum 255-15 was studied on a proteomic scale using a 2-D liquid phase separation coupled with MS technology. Whole-cell lysates of E. sibiricum 255-15 grown at 4 degrees C and 25 degrees C were first fractionated according to pI by chromatofocusing (CF), and further separated based on hydrophobicity by nonporous silica RP HPLC (NPS-RP-HPLC) which was on-line coupled with an ESI-TOF MS for intact protein M(r) measurement and quantitative interlysate comparison. Mass maps were created to visualize the differences in protein expression between different growth temperatures. The differentially expressed proteins were then identified by PMF using a MALDI-TOF MS and peptide sequencing by MS/MS with a MALDI quadrupole IT TOF mass spectrometer (MALDI-QIT-TOF MS). A total of over 500 proteins were detected in this study, of which 256 were identified. Among these proteins 39 were cold acclimation proteins (Caps) that were preferentially or uniquely expressed at 4 degrees C and three were homologous cold shock proteins (Csps). The homologous Csps were found to be similarly expressed at 4 degrees C and 25 degrees C, where these three homologous Csps represent about 10% of the total soluble proteins at both 4 degrees C and 25 degrees C.  相似文献   

5.
Systemic juvenile idiopathic arthritis (SJIA) is a chronic arthritis of children characterized by a combination of arthritis and systemic inflammation. There is usually non‐specific laboratory evidence of inflammation at diagnosis but no diagnostic test. Normalized volumes from 89/889 2‐D protein spots representing 26 proteins revealed a plasma pattern that distinguishes SJIA flare from quiescence. Highly discriminating spots derived from 15 proteins constitute a robust SJIA flare signature and show specificity for SJIA flare in comparison to active polyarticular juvenile idiopathic arthritis or acute febrile illness. We used 7 available ELISA assays, including one to the complex of S100A8/S100A9, to measure levels of 8 of the15 proteins. Validating our DIGE results, this ELISA panel correctly classified independent SJIA flare samples, and distinguished them from acute febrile illness. Notably, data using the panel suggest its ability to improve on erythrocyte sedimentation rate or C‐reactive protein or S100A8/S100A9, either alone or in combination in SJIA F/Q discriminations. Our results also support the panel's potential clinical utility as a predictor of incipient flare (within 9 wk) in SJIA subjects with clinically inactive disease. Pathway analyses of the 15 proteins in the SJIA flare versus quiescence signature corroborate growing evidence for a key role for IL‐1 at disease flare.  相似文献   

6.
Irritable bowel syndrome (IBS) is one of the most common functional disorders of the gastrointestinal tract. It is characterized by abdominal pain and changes in bowel habits. Various studies have investigated the pathophysiologic processes underlying IBS, but the mechanism remains poorly understood. In the present study, we established an IBS model and identified differentially expressed proteins in colon tissue of IBS rats compared with healthy controls by 2‐D gel electrophoresis, MALDI‐TOF‐MS, and Western blot analysis. Our results showed that 13 of the 1396 protein spots on 2‐D gel were differently expressed between the IBS and control groups. Ontological analysis of these proteins revealed primary roles in catalytic activity (protein disulfide‐isomerase A3, glyoxalase I, cathepsin S, α‐enolase), structural support (cytokeratin 8), antioxidant activity (peroxiredoxin‐6), protein binding (transgelin, serpin peptidase inhibitor B5), and signal transduction (40S ribosomal protein SA). Protein disulfide‐isomerase A3 and cytokeratin 8 overexpression in IBS were confirmed by Western blot. The findings indicate that multiple proteins are involved in IBS processes that influence intestinal tract immunity, inflammation, and nerve regulation. Our study provides useful candidate genes and proteins for further investigation.  相似文献   

7.
Nine tilapia Oreochromis niloticus group B streptococcus (GBS) strains differing in serotype and genotype were selected and paired. Two‐dimensional difference gel electrophoresis (2D DIGE) and matrix‐assisted laser‐desorption ionization time‐of‐flight‐mass spectrometry (MALDI‐TOF‐MS) were used to analyse the protein profiles of the strain pairs. Forty‐three proteins corresponding to 66 spots were identified, of which 35 proteins were found in the seven selected strain pairs that represented pairs differing in genotype and serotype. Among the 35 proteins, numbers of differentially expressed proteins in strains of different serotypes were greater than found in strains of different genotypes, suggesting that serotype plays a more essential role than genotype in the differential protein expression among GBS strains. No distinct pattern was found with respect to genotype and the protein expression profile of GBS strains. Several proteins were identified as surface‐associated cytoplasmic proteins that possessed the typical immunity‐eliciting characteristics of surface proteins. The identified proteins were found to be involved in 16 biological processes and seven Kyoto encyclopaedia of genes and genomes (KEGG) pathways. The data, for the first time, identified differentially expressed proteins in O. niloticus GBS strains of different serotypes, which play a major role in immunogenicity of O. niloticus GBS than does genotype, offering further information for design of a vaccine against O. niloticus GBS.  相似文献   

8.
Complex molecular changes associated with early stage human heart disease are poorly understood and prevent the development of effective treatments of human cardiac disease. Relatively minor structural changes in early disease may accompany some conditions such as arrhythmias. Our objective was to determine if significant proteomic changes occur in heart tissues in the absence of structural pathology. We used a proteomic "pipeline" based on Ciphergen SELDI-TOF/MS, gel electrophoresis and MALDI-TOF/MS. The kyphoscoliosis (ky) mouse carries a mutation in a putative transglutaminase causing a primary skeletal muscle disease. The ky protein is expressed usually in skeletal and cardiac muscle but its absence from the ky heart causes no structural pathology making it a good model of "occult" heart disease. We discovered 20 statistically validated biomarkers discriminating ky from normal hearts, one cardiac troponin-I was reduced by 40% in ky hearts. A 17% deficit was confirmed subsequently by Western blot. Thus, the proteome of ky hearts was abnormal, giving support to our contention that this SELDI-based analytical approach is capable of making a significant contribution to the analysis of complex proteomic changes in early stage human heart disease.  相似文献   

9.
10.
To evaluate the ability of an insect cell-free protein synthesis system to carry out proper protein prenylation, several CAIX (X indicates any C-terminal amino acid) sequences were introduced into the C-terminus of truncated human gelsolin (tGelsolin). Tryptic digests of these mutant proteins were analyzed by MALDI-TOF MS and MALDI-quadrupole-IT-TOF MS. The results indicated that the insect cell-free protein synthesis system possesses both farnesyltransferase (FTase) and geranylgeranyltransferase (GGTase) I, as is the case of the rabbit reticulocyte lysate system. The C-terminal amino acid sequence requirements for protein prenylation in this system showed high similarity to those observed in rat prenyltransferases. In the case of rhoC, which is a natural geranylgeranylated protein, it was found that it could serve as a substrate for both prenyltransferases in the presence of either farnesyl or geranylgeranyl pyrophosphate, whereas geranylgeranylation was only observed when both prenyl pyrophosphates were added to the in vitro translation reaction mixture. Thus, a combination of the cell-free protein synthesis system with MS is an effective strategy to analyze protein prenylation.  相似文献   

11.
The fruit fly Drosophila melanogaster is an excellent model organism for studying insect reproductive biology. Although the gene expression profiles of both male and female reproductive organs have been studied in detail, their proteomic profiles and functional characteristics largely remained to be clarified. In this study, we conducted proteome mapping of the male internal reproductive organs using 2‐DE. We identified a total of 440 protein components from gels of the male reproductive organs (testis, seminal vesicle, accessory gland, ejaculatory duct, and ejaculatory bulb). A number of proteins associated with odorant/pheromone‐binding, lipid metabolism, proteolysis, and antioxidation were expressed tissue specifically in the male reproductive system. Based on our proteomic data set, we constructed reference proteome maps of the reproductive organs, which will provide valuable information toward a comprehensive understanding of Drosophila reproduction.  相似文献   

12.
The structure, function, and physico-chemical properties of many proteins are determined by PTM, being glycosylation the most complex. This study describes how a combination of typical proteomics methods (2-DE) combines with glycomics strategies (HPLC, MALDI-TOF-MS, exoglycosidases sequencing) to yield comprehensive data about single spot-microheterogeneity, providing meaningful information for the detection of disease markers, pharmaceutical industry, antidoping control, etc. Recombinant erythropoietin and its hyperglycosylated analogue darbepoetin-alpha were chosen as showcases because of their relevance in these fields and the analytical challenge they represent. The combined approach yielded good results in terms of sample complexity (mixture glycoforms), reproducibility, sensitivity ( approximately 25 pmoles of glycoprotein/spot), and identification of the underlying protein. Heterogeneity was present in all spots but with a clear tendency; spots proximal to the anode contained the highest amount of tetra-antennary tetra-sialylated glycans, whereas the opposite occurred for spots proximal to the cathode with the majority of the structures being undersialylated. Spot microheterogeneity proved a consequence of the multiple glycosylation sites as they contributed directly to the number of possibilities to account for a discrete charge in a single spot. The interest of this combined glycoproteomics method resides in the efficiency for detecting and quantifying subtle dissimilarities originated from altered ratios of identical glycans including N-acetyl-lactosamine repeats, acetylation, or antigenic epitopes, that do not significantly contribute to the electrophoretic mobility, but affect the glycan microheterogeneity and the potential underlying related functionality.  相似文献   

13.
Lymph node metastasis (LNM) is recognized as an important factor involved in the tumor malignancy progression. Our previous study has indicated that the hepatocarcinoma cell line with 75% of LNM (Hca‐F)‐cell‐induced neoplasia and the hepatocarcinoma cell line with 25% of LNM‐induced neoplasia are accompanied with high (75%) and low (25%) incidences of LNM. In the current study, 62 and 54 protein spots were observed up‐regulated and down‐regulated in Hca‐F cell relative to the hepatocarcinoma cell line with 25% of LNM by 2‐D DIGE. Totally, 113 unique proteins were identified by HPLC‐nano ESI‐MS/MS analysis. The expression levels of Annexin A7, Ulch3, and ER protein 29 were validated by Western blotting analyses. The abnormally regulated proteins were categorized and annotated by protein analysis through evolutionary relationships analysis with the aid of the database for annotation, visualization and integrated discovery tool. Seventeen gene candidates concordantly expressed both at mRNA and protein levels. By making a challenge, we detected expression levels of Annexin A7 in primary gastric cancer (GC) and primary GC cancer tissues with LNMs by immunohistochemisty. Higher ratio of positive and strong expressions Annexin A7 in GC might correlate with the tumor progression. The repression of Annexin A7 inhibits the mobility and invasion abilities of Hca‐F cell, increases the apoptosis rate of Hca‐F cell. Current study narrows and provides certain specific protein candidates potentially playing important roles in LNM‐associated cancers.  相似文献   

14.
John JP  Anrather D  Pollak A  Lubec G 《Proteins》2006,64(2):543-551
Stomatin-like protein 2 (SLP-2) (syn.: EPB72-like 2 [NP_038470], HSPC108 [AAF29073]), a protein of unknown function, has been described in several tissues and cells but its primary structure is still not completely elucidated. Moreover, sequence conflicts appear in several databases. It was the aim of the study to further describe SLP-2 primary sequence and to solve existing sequence conflicts. For this purpose a protein extract was run on two-dimensional gel electrophoresis and SLP-2 was identified by MALDI-TOF/TOF. SLP-2 was digested with trypsin, chymotrypsin, Lys-C, and de novo sequencing studies as well as Nano-HPLC-ESI-MS/MS analysis were carried out. By the use of several proteases sequence coverage of 90% was obtained but the N-terminal 34 amino acids harbouring database conflict 1 were not covered. The presence of Leucine 129 (sequence conflict 2) and Alanine 202 (sequence conflict 3) was verified by three independent approaches. High sequence coverage resulting from multiple proteolytic cleavage, MALDI-TOF/TOF, Nano-HPLC-ESI-MS/MS and de novo sequencing completed unambiguous analysis of SLP-2 primary structure of approximately = 90% of sequence coverage. In addition, methodology used was able to solve so far pending sequence conflicts in databases and literature. SLP-2 is a high abundance protein in several tissues and cells and may play an important biological role and therefore characterization of its primary structure is of importance.  相似文献   

15.
Accidental nuclear scenarios lead to environmental contamination of unknown level. Immediate radiation‐induced biological responses that trigger processes leading to adverse health effects decades later are not well understood. A comprehensive proteomic analysis provides a promising means to identify and quantify the initial damage after radiation exposure. Early changes in the cardiac tissue of C57BL/6 mice exposed to total body irradiation were studied, using a dose relevant to both intentional and accidental exposure (3 Gy gamma ray). Heart tissue protein lysates were analyzed 5 and 24 h after the exposure using isotope‐coded protein labeling (ICPL) and 2‐dimensional difference‐in‐gel‐electrophoresis (2‐D DIGE) proteomics approaches. The differentially expressed proteins were identified by LC‐ESI‐MS‐MS. Both techniques showed similar functional groups of proteins to be involved in the initial injury. Pathway analyses indicated that total body irradiation immediately induced biological responses such as inflammation, antioxidative defense, and reorganization of structural proteins. Mitochondrial proteins represented the protein class most sensitive to ionizing radiation. The proteins involved in the initial damage processes map to several functional categories involving cardiotoxicity. This prompts us to propose that these early changes are indicative of the processes that lead to an increased risk of cardiovascular disease after radiation exposure.  相似文献   

16.
Members of the genus Cronobacter are opportunistic pathogens for neonates and are often associated with contaminated milk powder formulas. At present little is known about the virulence mechanisms or the natural reservoir of these organisms. The proteome of Cronobacter turicensis 3032, which has recently caused two deaths, was mapped aiming at a better understanding of physiology and putative pathogenic traits of this clinical isolate. Our analyses of extracellular, surface‐associated and whole‐cell proteins by two complementary proteomics approaches, 1D‐SDS‐PAGE combined with LC‐ESI‐MS/MS and 2D‐LC‐MALDI‐TOF/TOF MS, lead to the identification of 832 proteins corresponding to a remarkable 19% of the theoretically expressed protein complement of C. turicensis. The majority of the identified proteins are involved in central metabolic pathways, translation, protein folding and stability. Several putative virulence factors, whose expressions were confirmed by phenotypic assays, could be identified: a macrophage infectivity potentiator involved in C. turicensis persistence in host cells, a superoxide dismutase protecting the pathogen against reactive oxygen species and an enterobactin‐receptor protein for the uptake of siderophore‐bound iron. Most interestingly, a chitinase and a metalloprotease that might act against insects and fungi but no casein hydrolysing enzymes were found, suggesting that there is an environmental natural habitat of C. turicensis 3032.  相似文献   

17.
Lee TR  Huang SH  Lee CC  Lee HY  Chan HT  Lin KS  Chan HL  Lyu PC 《Proteomics》2012,12(11):1875-1878
Drosophila melanogaster has been used as a genetic model organism to understand the fundamental molecular mechanisms in human biology including memory formation that has been reported involving protein synthesis and/or post-translational modification. In this study, we employed a proteomic platform based on fluorescent 2DE and MALDI-TOF MS to build a standard D. melanogaster head proteome map for proteome-proteome comparison. In order to facilitate the comparison, an interactive database has been constructed for systematically integrating and analyzing the proteomes from different conditions and further implicated to study human diseases related to D. melanogaster model. In summary, the fundamental head proteomic database and bioinformatic analysis will be useful for further elucidating the biological mechanisms such as memory formation and neurodegenerative diseases.  相似文献   

18.
LP-BM5 Murine leukemia virus (MuLV) infection of C57BL/6 mice develop a disease that has many features in common with human acquired immunodeficiency syndrome (AIDS), in particular abnormal lymphoproliferation and severe immunodeficiency. Thus, this MAIDS model may be useful for evaluation of potent antirival agents in vivo. Deficiency in antioxidant micronutients such as selenium, zinc, and glutathione have been observed in AIDs and AIDS-related complex (ARC) patients. In the present study, the MAIDS model was used to evaluate immunological and oxidative effect of Se as sodium selenite. Results indicated that Se treatment 0.1 mg/kg/d (p.o.) inhibited splenomegaly and sera IgG elevation effectively. In addition to abnormal immunity, oxidative imbalance possibly existed in MAIDS model, as lipid peroxide increased significantly in spleen and whole blood glutathione peroxidase (GSH-Px) activity decreased markedly. Se supplementation had good protective effect.  相似文献   

19.
20.
Chronic alveolar hypoxia induces vascular remodeling processes in the lung resulting in pulmonary hypertension (PH). However, the mechanisms underlying pulmonary remodeling processes are not fully resolved yet. To investigate functional changes occurring during hypoxia exposure we applied 2DE to compare protein expression in lungs from mice subjected to 3 h of alveolar hypoxia and those kept under normoxic conditions. Already after this short‐time period several proteins were significantly regulated. Subsequent analysis by MALDI‐MS identified cofilin as one of the most prominently upregulated proteins. The regulation was confirmed by western blotting and its cellular localization was determined by immunohisto‐ and immunocytochemistry. Interestingly, enhanced cofilin serine 3 phosphorylation was observed after short‐term and after chronic hypoxia‐induced PH in mice, in pulmonary arterial smooth muscle cells (PASMC) from monocrotaline‐induced PH in rats, in lungs of idiopathic pulmonary arterial hypertension patients and in hypoxic or platelet‐derived growth factor BB‐treated human PASMC. Furthermore, elevated cofilin phosphorylation was attenuated by curative treatment of monocrotaline‐induced PH in rats and hypoxia‐induced PH in mice with the PDGF‐BB receptor antagonist imatinib. In conclusion, short‐term hypoxic exposure induced prominent changes in lung protein regulation. These very early changes allowed us to identify potential triggers of PH. Thus, respective 2DE analysis can lead to the identification of new target proteins for the possible treatment of PH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号