首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The different roles of Na+/Ca2+ (NCX) exchangers and Na+/Ca2+/K+ (NCKX) exchangers in regulation of the ionic homeostasis in neurones are poorly understood. We have previously shown that serotonin excites histaminergic tuberomamillary (TM) neurones by activation of 5-HT2C-receptors and Na+/Ca2+ exchange. With the help of single-cell RT-PCR (sc-RT-PCR) we have now determined the coexpression pattern of different subtypes of NCX and NCKX with serotonin receptors. The majority of TM neurones express NCX1, NCX2 and NCKX3. Serotonin 2C receptor-mRNA was detected in 70% while 5-HT2A mRNA was found in only 10% of TM neurones. In all neurones expressing the 5-HT2C receptor NCX1-mRNA was present. Double immunostaining revealed the presence of the NCX1 protein in histidine decarboxylase-positive neurones. In the majority of TM neurones one or two out of five isoforms, NCX1.4, NCX1.5, NCX1.7, NCX1.14, NCX1.15, were detected by cDNA sequencing and/or by restriction analysis. The alternative splicing region is important for the Ca2+ sensitivity and presumably for the modulation of NCX1 function by second messengers. We conclude that several exchanger-subtypes can be coexpressed in single neurones and that TM cells are heterogeneous with respect to their calcium homeostasis regulation.  相似文献   

2.
Physiologicalfunctions of the intracellular regulatory domains of theNa+/Ca2+ exchanger NCX1 were studied byexamining Ca2+ handling in CCL39 cells expressing alow-affinity Ca2+ regulatory site mutant (D447V/D498I), anexchanger inhibitory peptide (XIP) region mutant displaying noNa+ inactivation (XIP-4YW), or a mutant lacking most of thecentral cytoplasmic loop (246-672). We found that D447V/D498Iwas unable to efficiently extrude Ca2+ from the cytoplasm,particularly during a small rise in intracellular Ca2+concentration induced by the physiological agonist -thrombin orthapsigargin. The same mutant took up Ca2+ much lessefficiently than the wild-type NCX1 in Na+-free medium whentransfectants were not loaded with Na+, although itappeared to take up Ca2+ normally in transfectantspreloaded with Na+. XIP-4YW and, to a lesser extent,246-672, but not NCX1 and D447V/D498I, markedly accelerated theloss of viability of Na+-loaded transfectants. Furthermore,XIP-4YW was not activated by phorbol ester, whereas XIP-4YW andD447V/D498I were resistant to inhibition by ATP depletion. The resultssuggest that these regulatory domains play important roles in thephysiological and pathological Ca2+ handling by NCX1, aswell as in the regulation of NCX1 by protein kinase C or ATP depletion.

  相似文献   

3.
Here, we describe the Interactorium, a tool in which a Virtual Cell is used as the context for the seamless visualisation of the yeast protein interaction network, protein complexes and protein 3‐D structures. The tool has been designed to display very complex networks of up to 40 000 proteins or 6000 multiprotein complexes and has a series of toolboxes and menus to allow real‐time data manipulation and control the manner in which data are displayed. It incorporates new algorithms that reduce the complexity of the visualisation by the generation of putative new complexes from existing data and by the reduction of edges through the use of protein “twins” when they occur in multiple locations. Since the Interactorium permits multi‐level viewing of the molecular biology of the cell, it is a considerable advance over existing approaches. We illustrate its use for Saccharomyces cerevisiae but note that it will also be useful for the analysis of data from simpler prokaryotes and higher eukaryotes, including humans. The Interactorium is available for download at http://www.interactorium.net .  相似文献   

4.
5.
The mitogen‐activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K‐interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two‐hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K‐interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full‐length cDNA in the rice KOME ( http://cdna01.dna.affrc.go.jp/cDNA/ ) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead‐associated domain‐containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K‐interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors.  相似文献   

6.
Synaptosomal expression of NCX1, NCX2, and NCX3, the three variants of the Na(+)-Ca(2+) exchanger (NCX), was investigated in Alzheimer's disease parietal cortex. Flow cytometry and immunoblotting techniques were used to analyze synaptosomes prepared from cryopreserved brain of cognitively normal aged controls and late stage Alzheimer's disease patients. Major findings that emerged from this study are: (1) NCX1 was the most abundant NCX isoform in nerve terminals of cognitively normal patients; (2) NCX2 and NCX3 protein levels were modulated in parietal cortex of late stage Alzheimer's disease: NCX2 positive terminals were increased in the Alzheimer's disease cohort while counts of NCX3 positive terminals were reduced; (3) NCX1, NCX2 and NCX3 isoforms co-localized with amyloid-beta in synaptic terminals and all three variants are up-regulated in nerve terminals containing amyloid-beta. Taken together, these data indicate that NCX isoforms are selectively regulated in pathological terminals, suggesting different roles of each NCX isoform in Alzheimer's disease terminals.  相似文献   

7.
The ability to deliver calcium to the osteoid is critical to osteoblast function as a regulator of bone calcification. There are two known transmembrane proteins capable of translocating calcium out of the osteoblast, the Na(+)/Ca(2+) exchanger (NCX) and the plasma membrane Ca(2+)-ATPase (PMCA). In this study, we reveal the presence of the NCX3 isoform in primary osteoblasts and examine the expression of NCX1, NCX3, and PMCA1 during osteoblast differentiation. The predominant NCX isoform expressed by osteoblasts is NCX3. NCX1 also is expressed, but at low levels. Both NCX isoforms are expressed at nearly static levels throughout differentiation. In contrast, PMCA expression peaks at 8 days of culture, early in osteoblast differentiation, but declines thereafter. Immunocytochemical co-detection of NCX and PMCA reveal that NCX is positioned along surfaces of the osteoblast adjacent to osteoid, while PMCA is localized to plasma membrane sites distal to the osteoid. The expression pattern and spatial distribution of NCX support a role as a regulator of calcium efflux from osteoblasts required for calcification. The expression pattern and spatial distribution of PMCA makes its role in the mineralization process unlikely and suggests a role in calcium homeostasis following signaling events.  相似文献   

8.
Mammalian Na+/Ca2+ (NCX) and Na+/Ca2+-K+ exchangers (NCKX) are polytopic membrane proteins that play critical roles in calcium homeostasis in many cells. Although hydropathy plots for NCX and NCKX are very similar, reported topological models for NCX1 and NCKX2 differ in the orientation of the three C-terminal transmembrane segments (TMS). NCX1 is thought to have 9 TMS and a re-entrant loop, whereas NCKX2 is thought to have 10 TMS. The current topological model of NCKX2 is very similar to the 10 membrane spanning helices seen in the recently reported crystal structure of NCX_MJ, a distantly related archaebacterial Na+/Ca2+ exchanger. Here we reinvestigate the orientation of the three C-terminal TMS of NCX1 and NCKX2 using mass-tagging experiments of substituted cysteine residues. Our results suggest that NCX1, NCKX2 and NCX_MJ all share the same 10 TMS topology.  相似文献   

9.
The cardiac Na(+)/Ca(2+) exchanger (NCX) regulates cellular [Ca(2+)](i) and plays a central role in health and disease, but its molecular regulation is poorly understood. Here we report on how protons affect this electrogenic transporter by modulating two critically important NCX C(2) regulatory domains, Ca(2+) binding domain-1 (CBD1) and CBD2. The NCX transport rate in intact cardiac ventricular myocytes was measured as a membrane current, I(NCX), whereas [H(+)](i) was varied using an ammonium chloride "rebound" method at constant extracellular pH 7.4. At pH(i) = 7.2 and [Ca(2+)](i) < 120 nM, I(NCX) was less than 4% that of its maximally Ca(2+)-activated value. I(NCX) increases steeply at [Ca(2+)](i) between 130-150 nM with a Hill coefficient (n(H)) of 8.0 ± 0.7 and K(0.5) = 310 ± 5 nM. At pH(i) = 6.87, the threshold of Ca(2+)-dependent activation of I(NCX) was shifted to much higher [Ca(2+)](i) (600-700 nM), and the relationship was similarly steep (n(H) = 8.0±0.8) with K(0.5) = 1042 ± 15 nM. The V(max) of Ca(2+)-dependent activation of I(NCX) was not significantly altered by low pH(i). The Ca(2+) affinities for CBD1 (0.39 ± 0.06 μM) and CBD2 (K(d) = 18.4 ± 6 μM) were exquisitely sensitive to [H(+)], decreasing 1.3-2.3-fold as pH(i) decreased from 7.2 to 6.9. This work reveals for the first time that NCX can be switched off by physiologically relevant intracellular acidification and that this depends on the competitive binding of protons to its C(2) regulatory domains CBD1 and CBD2.  相似文献   

10.
The GC content is highly variable among the genomes of different organisms. It has been shown that recombinant gene expression in mammalian cells is much more efficient when GC‐rich coding sequences of a certain protein are used. In order to study protein–protein interactions in Varicella zoster virus, a GC‐low herpesvirus, we have developed a novel luminescence‐based maltose‐binding protein pull‐down interaction screening system (LuMPIS) that is able to overcome the impaired protein expression levels of GC‐low ORFs in mammalian expression systems.  相似文献   

11.
ERC‐55, encoded from RCN2, is localized in the ER and belongs to the CREC protein family. ERC‐55 is involved in various diseases and abnormal cell behavior, however, the function is not well defined and it has controversially been reported to interact with a cytosolic protein, the vitamin D receptor. We have used a number of proteomic techniques to further our functional understanding of ERC‐55. By affinity purification, we observed interaction with a large variety of proteins, including those secreted and localized outside of the secretory pathway, in the cytosol and also in various organelles. We confirm the existence of several ERC‐55 splicing variants including ERC‐55‐C localized in the cytosol in association with the cytoskeleton. Localization was verified by immunoelectron microscopy and sub‐cellular fractionation. Interaction of lactoferrin, S100P, calcyclin (S100A6), peroxiredoxin‐6, kininogen and lysozyme with ERC‐55 was further studied in vitro by SPR experiments. Interaction of S100P requires [Ca2+] of ~10?7 M or greater, while calcyclin interaction requires [Ca2+] of >10?5 M. Interaction with peroxiredoxin‐6 is independent of Ca2+. Co‐localization of lactoferrin, S100P and calcyclin with ERC‐55 in the perinuclear area was analyzed by fluorescence confocal microscopy. The functional variety of the interacting proteins indicates a broad spectrum of ERC‐55 activities such as immunity, redox homeostasis, cell cycle regulation and coagulation.  相似文献   

12.
13.
Three distinctmammalianNa+/Ca2+exchangers have been cloned: NCX1, NCX2, and NCX3. We have undertaken adetailed functional comparison of these three exchangers. Eachexchanger was stably expressed at high levels in the plasma membranesof BHK cells. Na+/Ca2+exchange activity was assessed using three different complementary techniques: Na+ gradient-dependent45Ca2+uptake into intact cells, Na+gradient-dependent45Ca2+uptake into membrane vesicles isolated from the transfected cells, andexchange currents measured using giant patches of excised cellmembrane. Apparent affinities for the transported ionsNa+ andCa2+ were markedly similar for thethree exchangers at both membrane surfaces. Likewise, generally similarresponses to changes in pH, chymotrypsin treatment, and application ofvarious inhibitors were obtained. Depletion of cellular ATP inhibitedNCX1 and NCX2 but did not affect the activity of NCX3. Exchangeactivities of NCX1 and NCX3 were modestly increased by agents thatactivate protein kinases A and C. All exchangers were regulated byintracellular Ca2+. NCX1-inducedexchange currents were especially large in excised patches and, likethe native myocardial exchanger, were stimulated by ATP. Results may beinfluenced by our choice of expression system and specific splicevariants, but, overall, the three exchangers appear to have verysimilar properties.

  相似文献   

14.
15.
Changes in intracellular [Ca(2+)](i) levels have been shown to influence developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of the myelination and re-myelination processes. In the present study, we explored whether calcium signals mediated by the selective sodium calcium exchanger (NCX) family members NCX1, NCX2, and NCX3, play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte phenotype. In fact, whereas NCX1 was downregulated, NCX3 was strongly upregulated during oligodendrocyte development. The importance of calcium signaling mediated by NCX3 during oligodendrocyte maturation was supported by several findings. Indeed, whereas knocking down the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) and myelin basic protein (MBP), its overexpression induced an upregulation of CNPase and MBP. Furthermore, NCX3-knockout mice showed not only a reduced size of spinal cord but also marked hypo-myelination, as revealed by decrease in MBP expression and by an accompanying increase in OPC number. Collectively, our findings indicate that calcium signaling mediated by NCX3 has a crucial role in oligodendrocyte maturation and myelin formation.  相似文献   

16.
The original bacterial two‐hybrid system is widely used but does not permit the study of interactions regulated by PTMs. Here, we have built a conditional two‐hybrid (C2H) system, in which bait and prey proteins can be co‐expressed in the presence of a modifying enzyme such as a methyltransferase, acetyltransferase, or kinase. Any increase or decrease in interaction due to the modification of the proteins can be measured by an increased or decreased level of reporter gene expression. The C2H system is comprised of eight new vectors based on the Novagen Duet co‐expression plasmids. These vectors include two multiple cloning sites per vector as well as a hexahistidine tag or S‐tag to aid in purification, if desired. We demonstrate the use of the C2H system to study the dimerization of the yeast protein Npl3, which is increased when methylated by the methyltransferase Hmt1.  相似文献   

17.
The involvement of MLH1 in several mismatch repair‐independent cellular processes has been reported. In an attempt to gain further insight into the protein's cellular functions, we screened for novel interacting partners of MLH1 utilizing a bacterial two‐hybrid system. Numerous unknown interacting proteins were identified, suggesting novel biological roles of MLH1. The network of MLH1 and its partner proteins involves a multitude of cellular processes. Integration of our data with the “General Repository for Interaction Datasets” highlighted that MLH1 exhibits relationships to three interacting pairs of proteins involved in cytoskeletal and filament organization: Thymosin β 4 and Actin γ, Cathepsin B and Annexin A2 as well as Spectrin α and Desmin. Coimmunoprecipitation and colocalization experiments validated the interaction of MLH1 with these proteins. Differential mRNA levels of many of the identified proteins, detected by microarray analysis comparing MLH1‐deficient and ‐proficient cell lines, support the assumed interplay of MLH1 and the identified candidate proteins. By siRNA knock down of MLH1, we demonstrated the functional impact of MLH1–Actin interaction on filament organization and propose that dysregulation of MLH1 plays an essential role in cytoskeleton dynamics. Our data suggest novel roles of MLH1 in cellular organization and colorectal cancerogenesis.  相似文献   

18.
The endogenous inhibitory factor (NCX(IF)) of the cardiac Na/Ca exchanger (NCX1) is a low molecular weight substance, which has a strong capacity to modulate the ventricle muscle contractility. Previously, we have shown that NCX(IF) can completely inhibit either the forward (Na(i)-dependent Ca-uptake) or reverse (Na(o)-dependent Ca-release) mode of Na/Ca exchange as well as its partial reaction, the Ca/Ca exchange. Although the preliminary studies have shown that NCX(IF) can rapidly (within few milliseconds) interact with a putative inhibitory site of the Na/Ca exchanger protein (or within its vicinity), it was not clear whether the NCX(IF) can directly interact with the ion transport sites of the exchanger protein or the interaction site of NCX(IF) is distinct from the ion-binding/transport site of NCX1. In order to segregate between these possibilities the NCX(IF) was tested for its capacity to compete with Ca at the cytosolic side by using the preparation of sarcolemma vesicles having predominantly the inside-out orientation. For this goal, the initial rates of Na(i)-dependent (45)Ca-uptake were measured in the presence of extravesicular (cytosolic) NCX(IF) under conditions in which the concentration of extravesicular Ca was varied (2-200 microM) and intravesicular Na was kept fixed at saturating concentration (160 mM). Under these conditions the NCX(IF) results in several fold decrease in V(max) values, while having no significant effect on the K(m). Taking into account the molecular weight of 350-550 Da (derived from the gel-filtration and mass-spectra data), the experimentally measured inhibitory potency of NCX(IF) can be estimated as the IC(50) = 0.3-0.6 microM. Therefore, it is concluded that the NCX(IF) is reasonably potent blocker, which interacts with cytosolic domain thereby preventing the ion-translocation (and not ion-binding) events.  相似文献   

19.
C‐terminal Src kinase (Csk) that functions as an essential negative regulator of Src family tyrosine kinases (SFKs) interacts with tyrosine‐phosphorylated molecules through its Src homology 2 (SH2) domain, allowing it targeting to the sites of SFKs and concomitantly enhancing its kinase activity. Identification of additional Csk‐interacting proteins is expected to reveal potential signaling targets and previously undescribed functions of Csk. In this study, using a direct proteomic approach, we identified 151 novel potential Csk‐binding partners, which are associated with a wide range of biological functions. Bioinformatics analysis showed that the majority of identified proteins contain one or several Csk‐SH2 domain‐binding motifs, indicating a potentially direct interaction with Csk. The interactions of Csk with four proteins (partitioning defective 3 (Par3), DDR1, SYK and protein kinase C iota) were confirmed using biochemical approaches and phosphotyrosine 1127 of Par3 C‐terminus was proved to directly bind to Csk‐SH2 domain, which was consistent with predictions from in silico analysis. Finally, immunofluorescence experiments revealed co‐localization of Csk with Par3 in tight junction (TJ) in a tyrosine phosphorylation‐dependent manner and overexpression of Csk, but not its SH2‐domain mutant lacking binding to phosphotyrosine, promoted the TJ assembly in Madin‐Darby canine kidney cells, implying the involvement of Csk‐SH2 domain in regulating cellular TJs. In conclusion, the newly identified potential interacting partners of Csk provided new insights into its functional diversity in regulation of numerous cellular events, in addition to controlling the SFK activity.  相似文献   

20.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号