首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Rnd3/RhoE is a small Rho GTPase involved in the regulation of different cell behaviors. Dysregulation of Rnd3 has been linked to tumorigenesis and metastasis. Lung cancers are the leading cause of cancer-related death in the West and around the world. The expression of Rnd3 and its ectopic role in non-small cell lung cancer (NSCLC) remain to be explored. Here, we reported that Rnd3 was down-regulated in three NSCLC cell lines: H358, H520 and A549. The down-regulation of Rnd3 led to hyper-activation of Rho Kinase and Notch signaling. The reintroduction of Rnd3 or selective inhibition of Notch signaling, but not Rho Kinase signaling, blocked the proliferation of H358 and H520 cells. Mechanistically, Notch intracellular domain (NICD) protein abundance in H358 cells was regulated by Rnd3-mediated NICD proteasome degradation. Rnd3 regulated H358 and H520 cell proliferation through a Notch1/NICD/Hes1 signaling axis independent of Rho Kinase.  相似文献   

2.
Regulation of protein kinase cascades by protein phosphatase 2A.   总被引:23,自引:0,他引:23  
Many protein kinases themselves are regulated by reversible phosphorylation. Upon cell stimulation, specific kinases are transiently phosphorylated and activated. Several of these protein kinases are substrates for protein phosphatase 2A (PP2A), and PP2A appears to be the major kinase phosphatase in eukaryotic cells that downregulates activated protein kinases. This idea is substantiated by the observation that some viral proteins and naturally occurring toxins target PP2A and modulate its activity. There is increasing evidence that PP2A activity is regulated by extracellular signals and during the cell cycle. Thus, PP2A is likely to play an important role in determining the activation kinetics of protein kinase cascades.  相似文献   

3.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

4.
5.
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.  相似文献   

6.
The use of tyrosine kinase inhibitors (TKIs) against EGFR/c-Met in non-small cell lung cancer (NSCLC) has been shown to be effective in increasing patient progression free survival (PFS), but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI) resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4–5 and 11–22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2–4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39%) by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.  相似文献   

7.
The Cdc25C phosphatase is a key activator of Cdc2/cyclin B that controls M-phase entry in eukaryotic cells. Here we discuss the regulation of Cdc25C by phosphorylation during the meiotic maturation of Xenopus oocytes. In G2 arrested oocytes, Cdc25C is phosphorylated on Ser287 and associated with 14-3-3 proteins. Entry of the oocytes into M-phase of meiosis is triggered by progesterone, which activates a signaling pathway leading to the dephosphorylation of Ser287, probably mediated by the PP1 phosphatase. The activation of Cdc25C during oocyte maturation correlates also with its phosphorylation on multiple sites. These phosphorylations involve several signaling pathways, including Polo kinases and MAP kinases, and might require also the inhibition of the PP2A phosphatase. Finally, Cdc25C is further phosphorylated by its substrate Cdc2/cyclin B, as part of an auto-amplification loop that ensures the high Cdc2/cyclin B activity level required to drive the oocyte through the meiotic cell cycle.  相似文献   

8.
Non-small-cell lung cancer (NSCLC) is the most common malignancy along with high mortality rate worldwide. Recently, nucleolar and spindle-associated protein 1 (NUSAP1) has been reported to be involved in the malignant progression of several cancers. However, in NSCLC, the biological function of NUSAP1 and its molecular mechanism have not been reported. Here, our findings indicated that the NUSAP1 messenger RNA expression level was remarkably upregulated in NSCLC tissues compared with that of adjacent normal tissues. We also found that NUSAP1 gene expression was notably upregulated in NSCLC cell lines (A549, 95-D, H358, and H1299) compared with that of normal human bronchial epithelial cell line (16HBE). Subsequently, the biological function of NUSAP1 was investigated in A549 and H358 cells transfected with NUSAP1 small interfering RNA (siRNA), respectively. Results showed that NUSAP1 knockdown inhibited NSCLC cell proliferation, and promoted cell apoptosis. Furthermore, the number of cell migration and invasion was significantly suppressed by NUSAP1 knockdown. In addition, our results indicated that NUSAP1 knockdown increased the gene expression of B-cell translocation gene 2 (BTG2), but decreased the expression levels of phosphoinositide 3-kinase (PI3K) and phosphorylated serine/threonine kinase (p-AKT). BTG2 siRNA partly abrogates the effect of NUSAP1 knockdown on BTG2 gene expression. Fumonisin B1 (FB1), a AKT activator, reversed the effect of NUSAP1 knockdown on the biological function in NSCLC. Taken together, NUSAP1 knockdown promotes NSCLC cell apoptosis, and inhibits cell proliferation, cell migration, and invasion, which is associated with regulating BTG2/PI3K/Akt signal pathway. Our findings suggest that NUSAP1 is a promising molecular target for NSCLC treatment.  相似文献   

9.
《Translational oncology》2020,13(2):135-145
Histone deacetylase 6 (HDAC6) regulates cytoplasmic signaling networks through deacetylation of various cytoplasmic substrates and serves as a key member of the ubiquitin proteasome system (UPS). This study is focused on HDAC6 regulation of the Notch1 receptor that plays a crucial role in tumor growth in NSCLC. A series of cell culture experiments were employed using A549, Lewis lung carcinoma 2 (LL2), and H1299 NSCLC cell lines to investigate HDAC6-mediated regulation of the Notch1 receptor through the UPS. HDAC6 was inhibited with small molecule inhibitors tubacin and ACY1215 in vitro and in vivo. Inhibition of HDAC6 led to reduced levels of Notch1 receptor in a dose-dependent manner in all three NSCLC cell lines tested. HDAC6 inhibition with ACY1215 led to G2 arrest, increased apoptosis, and increased levels of cleaved PARP1 in A549, LL2, and H1299 cell lines. In vivo inhibition of HDAC6 with ACY1215 significantly reduced LL2 tumor growth rate. Our data show that HDAC6 in NSCLC cells supports Notch1 signaling and promotes cell survival and proliferation. Our results support clinical investigation of HDAC6 inhibitors as a potential therapeutic option for treatment of NSCLC patients.  相似文献   

10.
11.
Singh T  Sharma SD  Katiyar SK 《PloS one》2011,6(11):e27444
Lung cancer remains the leading cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) represents approximately 80% of total lung cancer cases. The use of non-toxic dietary phytochemicals can be considered as a chemotherapeutic strategy for the management of the NSCLC. Here, we report that grape seed proanthocyanidins (GSPs) induce apoptosis of NSCLC cells, A549 and H1299, in vitro which is mediated through increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl2 and Bcl-xl, disruption of mitochondrial membrane potential, and activation of caspases 9, 3 and poly (ADP-ribose) polymerase (PARP). Pre-treatment of A549 and H1299 cells with the caspase-3 inhibitor (z-DEVD-fmk) significantly blocked the GSPs-induced apoptosis of these cells confirmed that GSPs-induced apoptosis is mediated through activation of caspases-3. Treatments of A549 and H1299 cells with GSPs resulted in an increase in G1 arrest. G0/G1 phase of the cell cycle is known to be controlled by cyclin dependent kinases (Cdk), cyclin-dependent kinase inhibitors (Cdki) and cyclins. Our western blot analyses showed that GSPs-induced G1 cell cycle arrest was mediated through the increased expression of Cdki proteins (Cip1/p21 and Kip1/p27), and a simultaneous decrease in the levels of Cdk2, Cdk4, Cdk6 and cyclins. Further, administration of 50, 100 or 200 mg GSPs/kg body weight of mice by oral gavage (5 d/week) markedly inhibited the growth of s.c. A549 and H1299 lung tumor xenografts in athymic nude mice, which was associated with the induction of apoptotic cell death, increased expression of Bax, reduced expression of anti-apoptotic proteins and activation of caspase-3 in tumor xenograft cells. Based on the data obtained in animal study, human equivalent dose of GSPs was calculated, which seems affordable and attainable. Together, these results suggest that GSPs may represent a potential therapeutic agent for the non-small cell lung cancer.  相似文献   

12.
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide. Basic fibroblast growth factor (bFGF) is up-regulated in NSCLC patients and plays an important role in tumor growth. In this paper, we attempt to evaluate the therapeutic potential of bFGF binding peptide (named as P7) using as a potent bFGF antagonist via exploration of its anti-proliferation effect on NSCLC cells. Our experiments showed that P7 peptide inhibited bFGF-stimulated proliferation of NSCLC cell lines including A549, H1299, and H460. The inhibitory mechanism of P7 involved cell cycle arrest at the G0/G1phase caused by suppression of cyclin D1, blockage of the activation of Erk1/2, P38, Akt, and inhibition of bFGF internalization. Strategies using bFGF antagonist peptides with potent anti-proliferation property may have therapeutic potential in NSCLC.  相似文献   

13.
14.
The goal of the present study was to define gene expression signatures that predict a chemosensitivity of non-small cell lung cancer (NSCLC) to cisplatin and paclitaxel. To generate set of candidate genes likely to be predictive a current knowledge of the pathways involved in resistance and sensitivity to individual drugs was used. Forty four genes coding proteins belonging to following categories: ATP-dependent transport proteins, detoxification system proteins, reparation system proteins, tubulin and proteins responsible for its synthesis, cell cycle and apoptosis proteins were considered. Eight NSCLC cell lines (A549, Calul, H1299, H322, H358, H460, H292, and H23) were used in our study. For each NSCLC cell line a cisplatin and paclitaxel chemosensitivity as well as an expression level of 44 candidate genes were evaluated. To develop a chemosensitivity prediction model based on selected genes expression level a multiple regression analysis was performed. The model based on the expression level of 11 genes (TUBB3, TXR1, MRP5, MSH2, ERCC1, STMN, SMAC, FOLR1, PTPN14, HSPA2, GSTP1) allowed us to predict the paclitaxel cytotoxic concentration with high level of correlation (r = 0.91, p < 0.01). However, none model developed was able to reliably predict a sensitivity of the NSCLC cells to cisplatin.  相似文献   

15.
Prolactin (PRL) is a pleiotropic cytokine promoting cellular proliferation and differentiation. Because PRL activates the Src family of tyrosine kinases (SFK), we have studied the role of these kinases in PRL cell proliferation signaling. PRL induced [(3)H]thymidine incorporation upon transient transfection of BaF-3 cells with the PRL receptor. This effect was inhibited by cotransfection with the dominant negative mutant of c-Src (K>A295/Y>F527, SrcDM). The role of SFK in PRL-induced proliferation was confirmed in the BaF-3 PRL receptor-stable transfectant, W53 cells, where PRL induced Fyn and Lyn activation. The SFK-selective inhibitors PP1/PP2 and herbimycin A blocked PRL-dependent cell proliferation by arresting the W53 cells in G1, with no evident apoptosis. In parallel, PP1/PP2 inhibited PRL induction of cell growth-related genes c-fos, c-jun, c-myc, and odc. These inhibitors have no effect on PRL-mediated activation of Ras/Mapk and Jak/Start pathways. In contrast, they inhibited the PRL-dependent stimulation of the SFKs substrate Sam68, the phosphorylation of the tyrosine phosphatase Shp2, and the PI3K-dependent Akt and p70S6k serine kinases. Consistently, transient expression of SrcDM in W53 cells also blocked PRL activation of Akt. These results demonstrate that activation of SFKs is required for cell proliferation induced by PRL.  相似文献   

16.
17.
BackgroundNon-small cell lung cancer (NSCLC) is a leading cause of cancer death. Branched-chain amino acid (BCAA) homeostasis is important for normal physiological metabolism. Branched-chain keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme involved in BCAA degradation. BCAA metabolism has been highlighted in human cancers. The aberrant activation of mTORC1 has been implicated in tumor progression. Rab1A is a small GTPase, an activator of mTORC1, and an oncogene. This study aimed to reveal the specific role of BCKDK-BCAA-Rab1A-mTORC1 signaling in NSCLC.MethodsWe analyzed a cohort of 79 patients with NSCLC and 79 healthy controls. Plasma BCAA assays, immunohistochemistry, and network and pathway analyses were performed. The stable cell lines BCKDK-KD, BCKDK-OV A549, and H1299 were constructed. BCKDK, Rab1A, p-S6 and S6 were detected using western blotting to explore their molecular mechanisms of action in NSCLC. The effects of BCAA and BCKDK on the apoptosis and proliferation of H1299 cells were detected by cell function assays.ResultsWe demonstrated that NSCLC was primarily involved in BCAA degradation. Therefore, combining BCAA, CEA, and Cyfra21-1 is clinically useful for treating NSCLC. We observed a significant increase in BCAA levels, downregulation of BCKDHA expression, and upregulation of BCKDK expression in NSCLC cells. BCKDK promotes proliferation and inhibits apoptosis in NSCLC cells, and we observed that BCKDK affected Rab1A and p-S6 in A549 and H1299 cells via BCAA modulation. Leucine affected Rab1A and p-S6 in A549 and H1299 cells and affected the apoptosis rate of H1299 cells.In conclusion, BCKDK enhances Rab1A-mTORC1 signaling and promotes tumor proliferation by suppressing BCAA catabolism in NSCLC, suggesting a new biomarker for the early diagnosis and identification of metabolism-based targeted approaches for patients with NSCLC.  相似文献   

18.
Lung cancer is one of the most common reasons for cancer-induced mortality across the globe, despite major advancements in the treatment strategies including radiotherapy and chemotherapy. Existing reports suggest that CXCR4 is frequently expressed by malignant tumor and is imperative for vascularization, tumor growth, cell migration, and metastasis pertaining to poor prognosis. In this study, we infer that CXCR4 confers resistance to ionizing radiation (IR) in nonsmall cell lung cancer (NSCLC) cells. Further, on the basis of colony forming ability, one finds that drug-resistant A549/GR cells with improved CXCR4 expression exhibited more resistance to IR than A549 cells evidenced along with a reduction in the formation of γ-H2AX foci after IR. Transfection of shRNA against CXCR4 or treatment of pharmacological inhibitor (AMD3100) both led to sensitization of A549/GR cells towards IR. Conversely, the overexpression of CXCR4 in A549 and H460 cell lines was found to improve clonogenic survival, and reduce the formation of γ-H2AX foci after IR. CXCR4 expression was further correlated with STAT3 activation, and suppression of STAT3 activity with siSTAT3 or a specific inhibitor (WP1066) significantly stymied the colony-forming ability and increased γ-H2AX foci formation in A549/GR cells, indicating that CXCR4-mediated STAT3 signaling plays an important role for IR resistance in NSCLC cells. Finally, CXCR4/STAT3 signaling was mediated with the upregulation of Slug and downregulation of the same with siRNA, which heightened IR sensitivity in NSCLC cells. Our data collectively suggests that CXCR4/STAT3/Slug axis is paramount for IR resistance of NSCLC cells, and can be regarded as a therapeutic target to enhance the IR sensitivity of this devastating cancer.Subject terms: Radiotherapy, Prognostic markers  相似文献   

19.
Non-small-cell lung cancer (NSCLC) accounts for nearly 85% of lung cancer cases. LukS-PV, one of the two components of Panton-Valentine leucocidin (PVL), is produced by Staphylococcus aureus. The present study showed that LukS-PV can induce apoptosis in human acute myeloid leukemia (AML) lines (THP-1 and HL-60). However, the role of LukS-PV in NSCLC is unclear. In this study, we treated NSCLC cell lines A549 and H460 and a normal lung cell line, 16HBE, with LukS-PV and investigated the biological roles of LukS-PV in NSCLC. Cells were treated with varying concentrations of LukS-PV and cell viability was evaluated by CCK8 and EdU assay. Flow cytometry was used to detect cell apoptosis and analyze the cell cycle, and the expression of apoptosis and cell cycle-associated proteins and genes were identified by western blotting analysis and qRT-polymerase chain reaction, respectively. We found that LukS-PV inhibited the proliferation of NSCLC cells but had little cytotoxicity in normal lung cells. LukS-PV induced NSCLC cell apoptosis and increased the BAX/BCL-2 ratio, triggering S-phase arrest in A549 and H460 cells while increasing P21 expression and decreasing CDK2, cyclin D1, and cyclin A2 expression. We also observed increased P-p38 and P-ERK in NSCLC cells treated with LukS-PV. Treatment of NSCLC with LukS-PV combined with p38 and ERK inhibitors reversed the pro-apoptotic and pro-cell cycle arrest effects of LukS-PV. Overall, these findings indicate that LukS-PV has anti-tumor effects in NSCLC and may contribute to the development of anti-cancer agents.  相似文献   

20.
The tyrosine kinase c-Src is upregulated in various human cancers, although the precise regulatory mechanism underlying this upregulation is unclear. We previously reported that a transmembrane adaptor Csk-binding protein (Cbp; PAG1) plays an important role in controlling the cell transformation that is induced by the activation of c-Src. To elucidate the in vivo role of Cbp, we examined the function of Cbp in lung cancer cell lines and tissues. In this study, we found that Cbp was markedly downregulated in human non-small cell lung cancer (NSCLC) cells. The ectopic expression of Cbp suppressed the anchorage-independent growth of the NSCLC cell lines (A549 and Lu99) that had upregulated c-Src, whereas the Cbp expression had little effect on other NSCLC cell lines (PC9 and Lu65) that express normal levels of c-Src. The expression of Cbp suppressed the kinase activity of c-Src in A549 cells by recruiting c-Src and its negative regulator, C-terminal Src kinase (Csk), to lipid rafts. The treatment with Src inhibitors, such as PP2, dasatinib, and saracatinib, also suppressed the growth of A549 cells. Furthermore, Cbp expression attenuated the ability of A549 cells to form tumors in nude mice, invade in vitro, and metastasize in vivo. In addition, we found a significant inverse correlation between the level of Cbp expression and the extent of lymph node metastasis in human lung cancers. These results indicate that Cbp is required for the Csk-mediated inactivation of c-Src and may control the promotion of malignancy in NSCLC tumors that are characterized by c-Src upregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号