首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A hallmark of the response to high-dose radiation is the up-regulation and phosphorylation of proteins involved in cell cycle checkpoint control, DNA damage signaling, DNA repair, and apoptosis. Exposure of cells to low doses of radiation has well documented biological effects, but the underlying regulatory mechanisms are still poorly understood. The objective of this study is to provide an initial profile of the normal human skin fibroblast (HSF) phosphoproteome and explore potential differences between low- and high-dose irradiation responses at the protein phosphorylation level. Several techniques including Trizol extraction of proteins, methylation of tryptic peptides, enrichment of phosphopeptides with immobilized metal affinity chromatography (IMAC), nanoflow reversed-phase HPLC (nano-LC)/electrospray ionization, and tandem mass spectrometry were combined for analysis of the HSF cell phosphoproteome. Among 494 unique phosphopeptides, 232 were singly phosphorylated, while 262 peptides had multiple phosphorylation sites indicating the overall effectiveness of the IMAC technique to enrich both singly and multiply phosphorylated peptides. We observed approximately 1.9-fold and approximately 3.6-fold increases in the number of identified phosphopeptides in low-dose and high-dose samples respectively, suggesting both radiation levels stimulate cell signaling pathways. A 6-fold increase in the phosphorylation of cyclin dependent kinase (cdk) motifs was observed after low- dose irradiation, while high-dose irradiation stimulated phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) and AKT/RSK motifs 8.5- and 5.5-fold, respectively. High- dose radiation resulted in the increased phosphorylation of proteins involved in cell signaling pathways as well as apoptosis while low-dose and control phosphoproteins were broadly distributed among biological processes.  相似文献   

3.
Phosphorylation is one of the most important PTMs and is estimated to occur on 30% of the mammalian proteome. Its perturbed regulation has been implicated in many pathologies. The rarity of phosphotyrosine compared with phosphoserine or phosphothreonine is prompting the development of more sensitive approaches because proteomic technologies that are currently used to assess tyrosine phosphorylation in proteins are inadequate, identifying only a fraction of the predicted tyrosine phosphoproteome. Here we describe the development of a reproducible, high‐sensitivity methodology for the detection and mapping of phosphotyrosine residues by MS. The anti‐phosphotyrosine antibody 4G10 was coupled covalently to super para‐magnetic beads or by affinity to super para‐magnetic beads with protein G covalently attached. Using this approach, we successfully enriched phosphotyrosine peptides mixed with non‐phosphorylated peptides at a ratio of up to 1:200, enabling detection at a level representing the highest sensitivity reported for tyrosine phosphorylation. The beads were subsequently used to enrich tyrosine phosphopeptides from a digest of the in vitro‐phosphorylated recombinant β‐intracellular region of the granulocyte‐macrophage colony‐stimulating factor receptor, which was subsequently analysed by MALDI‐TOF/TOF MS. Our results define this methodology as a sensitive approach for tyrosine phosphoproteome analysis.  相似文献   

4.
Multiple in vivo tyrosine phosphorylation sites in EphB receptors   总被引:8,自引:0,他引:8  
Kalo MS  Pasquale EB 《Biochemistry》1999,38(43):14396-14408
Autophosphorylation regulates the function of receptor tyrosine kinases. To dissect the mechanism by which Eph receptors transmit signals, we have developed an approach using matrix-assisted laser desorption-ionization (MALDI) mass spectrometry to map systematically their in vivo tyrosine phosphorylation sites. With this approach, phosphorylated peptides from receptors digested with various endoproteinases were selectively isolated on immobilized anti-phosphotyrosine antibodies and analyzed directly by MALDI mass spectrometry. Multiple in vivo tyrosine phosphorylation sites were identified in the juxtamembrane region, kinase domain, and carboxy-terminal tail of EphB2 and EphB5, and found to be remarkably conserved between these EphB receptors. A number of these sites were also identified as in vitro autophosphorylation sites of EphB5 by phosphopeptide mapping using two-dimensional chromatography. Only two in vitro tyrosine phosphorylation sites had previously been directly identified for Eph receptors. Our data further indicate that in vivo EphB2 and EphB5 are also extensively phosphorylated on serine and threonine residues. Because phosphorylation at each site can affect receptor signaling properties, the multiple phosphorylation sites identified here for the EphB receptors suggest a complex regulation of their functions, presumably achieved by autophosphorylation as well as phosphorylation by other kinases. In addition, we show that MALDI mass spectrometry can be used to determine the binding sites for Src homology 2 (SH2) domains by identifying the EphB2 phosphopeptides that bind to the SH2 domain of the Src kinase.  相似文献   

5.
Protein phosphorylation is a reversible post-translational modification essential for the regulation of several signal transduction pathways and biological processes in the living cell. Therefore, the identification of protein phosphorylation sites is crucial to understand cell signaling control at the molecular level. Based on mass spectrometry, recent studies have reported the large-scale mapping of phosphorylation sites in various eukaryotes and prokaryotes. However, little is known about the impact of phosphorylation in protozoan parasites. To in depth characterize the phosphoproteome of Trypanosoma cruzi, a parasite of the Kinetoplastida class, protein samples from cells at different phases of the metacyclogenesis--differentiation process of the parasites from non-infective epimastigotes to infective metacyclic trypomastigotes--were enriched for phosphopeptides using TiO(2) chromatography and analyzed on an LTQ-Orbitrap mass spectrometer. In total, 1,671 proteins were identified, including 753 phosphoproteins, containing a total of 2,572 phosphorylation sites. The distribution of phosphorylated residues was 2,162 (84.1%) on serine, 384 (14.9%) on threonine and 26 (1.0%) on tyrosine. Here, we also report several consensus phosphorylation sequence motifs and as some of these conserved groups have enriched biological functions, we can infer the regulation by protein kinases of this functions. To our knowledge, our phosphoproteome is the most comprehensive dataset identified until now for Kinetoplastida species. Here we also were able to extract biological information and infer groups of sites phosphorylated by the same protein kinase. To make our data accessible to the scientific community, we uploaded our study to the data repositories PHOSIDA, Proteome Commons and TriTrypDB enabling researchers to access information about the phosphorylation sites identified here.  相似文献   

6.
Phosphoproteomics deals with the identification and quantification of thousands of phosphopeptides. Localizing the phosphorylation site is however much more difficult than establishing the identity of a phosphorylated peptide. Further, recent findings have raised doubts of the validity of the site assignments in large-scale phosphoproteomics data sets. To improve methods for site localization, we made use of a synthetic phosphopeptide library and SILAC-labeled peptides from whole cell lysates and analyzed these with high-resolution tandem mass spectrometry on an LTQ Orbitrap Velos. We validated gas-phase phosphate rearrangement reactions during collision-induced dissociation (CID) and used these spectra to devise a quantitative filter that by comparing signal intensities of putative phosphorylated fragment ions with their nonphosphorylated counterparts allowed us to accurately pinpoint which fragment ions contain a phosphorylated residue and which ones do not. We also evaluated higher-energy collisional dissociation (HCD) and found this to be an accurate method for correct phosphorylation site localization with no gas-phase rearrangements observed above noise level. Analyzing a large set of HCD spectra of SILAC-labeled phosphopeptides, we identified a novel fragmentation mechanism that generates a phosphorylation site-specific neutral loss derived x-ion, which directly pinpoints the phosphorylated residue. Together, these findings significantly improve phosphorylation site localization confidence.  相似文献   

7.
Recent advances in MS instrumentation and progresses in phosphopeptide enrichment, in conjunction with more powerful data analysis tools, have facilitated unbiased characterization of thousands of site‐specific phosphorylation events. Combined with stable isotope labeling by amino acids in cell culture metabolic labeling, these techniques have made it possible to quantitatively evaluate phosphorylation changes in various physiological states in stable cell lines. However, quantitative phosphoproteomics in primary cells and tissues remains a major technical challenge due to the lack of adequate techniques for accurate quantification. Here, we describe an integrated strategy allowing for large scale quantitative profiling of phosphopeptides in complex biological mixtures. In this technique, the mixture of proteolytic peptides was subjected to phosphopeptide enrichment using a titania affinity column, and the purified phosphopeptides were subsequently labeled with iTRAQ reagents. After further fractionation by strong‐cation exchange, the peptides were analyzed by LC‐MS/MS on an Orbitrap mass spectrometer, which collects CID and high‐energy collisional dissociation (HCD) spectra sequentially for peptide identification and quantitation. We demonstrate that direct phosphopeptide enrichment of protein digests by titania affinity chromatography substantially improves the efficiency and reproducibility of phosphopeptide proteomic analysis and is compatible with downstream iTRAQ labeling. Conditions were optimized for HCD normalized collision energy to balance the overall peptide identification and quantitation using the relative abundances of iTRAQ reporter ions. Using this approach, we were able to identify 3557 distinct phosphopeptides from HeLa cell lysates, of which 2709 were also quantified from HCD scans.  相似文献   

8.
Neuroblastoma is an embryonal tumor of childhood with a heterogenous clinical presentation that reflects differences in activation of complex biological signaling pathways. Protein phosphorylation is a key component of cellular signal transduction and plays a critical role in processes that control cancer cell growth and survival. We used shotgun LC/MS to compare phosphorylation between a human MYCN amplified neuroblastoma cell line (NB10), modeling a resistant tumor, and a human neural precursor cell line (NPC), modeling a normal baseline neural crest cell. 2181 unique phosphorylation sites representing 1171 proteins and 2598 phosphopeptides were found. Protein kinases accounted for 6% of the proteome, with a predominance of tyrosine kinases, supporting their prominent role in oncogenic signaling pathways. Highly abundant receptor tyrosine kinase (RTK) phosphopeptides in the NB10 cell line relative to the NPC cell line included RET, insulin-like growth factor 1 receptor/insulin receptor (IGF-1R/IR), and fibroblast growth factor receptor 1 (FGFR1). Multiple phosphorylated peptides from downstream mediators of the PI3K/AKT/mTOR and RAS pathways were also highly abundant in NB10 relative to NPC. Our analysis highlights the importance of RET, IGF-1R/IR and FGFR1 as RTKs in neuroblastoma and suggests a methodology that can be used to identify potential novel biological therapeutic targets. Furthermore, application of this previously unexploited technology in the clinic opens the possibility of providing a new wide-scale molecular signature to assess disease progression and prognosis.  相似文献   

9.
Phosphorylation is a protein post-translational modification with key roles in the regulation of cell biochemistry and signaling. In-depth analysis of phosphorylation using mass spectrometry is permitting the investigation of processes controlled by phosphorylation at the system level. A critical step of these phosphoproteomics methods involves the isolation of phosphorylated peptides from the more abundant unmodified peptides produced by the digestion of cell lysates. Although different techniques to enrich for phosphopeptides have been reported, there are limited data on their suitability for direct quantitative analysis by MS. Here we report a TiO2 based enrichment method compatible with large-scale and label-free quantitative analysis by LC–MS/MS. Starting with just 500 μg of protein, the technique reproducibly isolated hundreds of peptides, >85% of which were phosphorylated. These results were obtained by using relatively short LC–MS/MS gradient runs (45 min) and without any previous separation step. In order to characterize the performance of the method for quantitative analyses, we employed label-free LC–MS/MS using extracted ion chromatograms as the quantitative readout. After normalization, phosphopeptides were quantified with good precision (coefficient of variation was 20% on average, n = 900 phosphopeptides), linearity (correlation coefficients >0.98) and accuracy (deviations <20%). Thus, phosphopeptide ion signals correlated with the concentration of the respective phosphopeptide in samples, making the approach suitable for in-depth relative quantification of phosphorylation by label-free LC–MS/MS.  相似文献   

10.
Global profiling of phosphopeptides by titania affinity enrichment   总被引:1,自引:0,他引:1  
Protein phosphorylation is a ubiquitous post-translational modification critical to many cellular processes. Large-scale unbiased characterization of phosphorylation status remains a major technical challenge in proteomics. In the present work, we evaluate and optimize titania-based affinity enrichment for global profiling of phosphopeptides from complex biological mixtures. We demonstrate that inclusion of glutamic acid in the sample loading buffer substantially reduced nonspecific binding of nonphosphorylated peptides to the titania while retaining the high binding affinity for phosphopeptides. The reduction in nonspecific peptide binding enhanced overall phosphopeptide recovery, ranging from 22 to 85%, and led to substantial improvement in large-scale global profiling. In addition, we observed that the overall identification of phosphopeptides was significantly enhanced by neutral loss-triggered MS (3) scans and respective use of multiple charge- and mass-dependent filtering criteria for MS (2) and MS (3) spectra. In conjunction with strong-cation exchange chromatography (SCX) for prefractionation, a total of 4002 distinct phosphopeptides were identified from SKBr3 breast cancer cells at false-positive rates of 3.7% and 5.5%, respectively, for singly and doubly phosphorylated peptides.  相似文献   

11.
Reversible phosphorylation is one of the most important posttranslational modifications of cellular proteins. Mass spectrometry is a widely used technique in the characterization of phosphorylated proteins and peptides. Similar to nonmodified peptides, sequence information for phosphopeptides digested from proteins can be obtained by tandem mass analysis using either electrospray ionization or matrix assisted laser desorption/ionization (MALDI) mass spectrometry. However, the facile loss of neutral phosphoric acid (H3PO4) or HPO3 from precursor ions and fragment ions hampers the precise determination of phosphorylation site, particularly if more than one potential phosphorylation site or concensus sequence is present in a given tryptic peptide. Here, we investigated the fragmentation of phosphorylated peptides under laser-induced dissociation (LID) using a MALDI-time-of-flight mass spectrometer with a curved-field reflectron. Our data demonstrated that intact fragments bearing phosphorylated residues were produced from all tested peptides that contain at least one and up to four phosphorylation sites at serine, threonine, or tyrosine residues. In addition, the LID of phosphopeptides derivatized by N-terminal sulfonation yields simplified MS/MS spectra, suggesting the combination of these two types of spectra could provide an effective approach to the characterization of proteins modified by phosphorylation.  相似文献   

12.
Protein tyrosine phosphorylation has not been considered to be important for cellular activation by phospholipase C-linked vasoactive peptides. We found that endothelin, angiotensin II, and vasopressin (AVP), peptides that signal via phospholipase C activation, rapidly enhanced tyrosine phosphorylation of proteins of approximate molecular mass 225, 190, 135, 120, and 70 kDa in rat renal mesangial cells. The phosphorylated proteins were cytosolic or membrane-associated, and none were integral to the membrane, suggesting that the peptide receptors are not phosphorylated on tyrosine. Epidermal growth factor (EGF), which does not activate phospholipase C in these cells, induced the tyrosine phosphorylation of its own 175-kDa receptor, in addition to five proteins of identical molecular mass to those phosphorylated in response to endothelin, AVP, and angiotensin II. This suggests that in mesangial cells there is a common signaling pathway for phospholipase C-coupled agonists and agonists classically assumed to signal via receptor tyrosine kinase pathways, such as EGF. The phorbol ester, phorbol 12-myristate 13-acetate, and the synthetic diacylglycerol, oleoyl acetylglycerol, stimulated the tyrosine phosphorylation of proteins identical to those phosphorylated by the phospholipase C-linked peptides, suggesting that protein kinase C (PKC) activation is sufficient to active tyrosine phosphorylation. However, the PKC inhibitor, staurosporine, and down-regulation of PKC activity by prolonged exposure to phorbol esters completely inhibited tyrosine phosphorylation in response to PMA but not to endothelin, AVP, or EGF. In conclusion, endothelin, angiotensin II, and AVP enhances protein tyrosine phosphorylation via at least two pathways, PKC-dependent and PKC-independent. Although activation of PKC may be sufficient to enhance protein tyrosine phosphorylation, PKC is not necessary and may not be the primary route by which these agents act. At least one of these pathways is shared with the growth factor EGF, suggesting not only common intermediates in the signaling pathways for growth factors and vasoactive peptides but also perhaps common cellular tyrosine kinases which phosphorylate these intermediates.  相似文献   

13.
Reversible phosphorylation of proteins is the most common PTM in cell‐signaling pathways. Despite this, high‐throughput methods for the systematic detection, identification, and quantification of phosphorylated peptides have yet to be developed. In this paper, we describe the establishment of an efficient online titaniuim dioxide (TiO2)‐based 3‐D LC (strong cationic exchange/TiO2/C18)‐MS3‐linear ion trap system, which provides fully automatic and highly efficient identification of phosphorylation sites in complex peptide mixtures. Using this system, low‐abundance phosphopeptides were isolated from cell lines, plasma, and tissue of healthy and hepatocellular carcinoma (HCC) patients. Furthermore, the phosphorylation sites were identified and the differences in phosphorylation levels between healthy and HCC patient specimens were quantified by labeling the phosphopeptides with isotopic analogs of amino acids (stable isotope labeling with amino acids in cell culture for HepG2 cells) or water (HO for tissues and plasma). Two examples of potential HCC phospho‐biomarkers including plectin‐1(phopho‐Ser‐4253) and alpha‐HS‐glycoprotein (phospho‐Ser 138 and 312) were identified by this analysis. Our results suggest that this comprehensive TiO2‐based online‐3‐D LC‐MS3‐linear ion trap system with high‐throughput potential will be useful for the global profiling and quantification of the phosphoproteome and the identification of disease biomarkers.  相似文献   

14.
The mitochondrial oxidative phosphorylation (OxPhos) system plays a key role in energy production, the generation of free radicals, and apoptosis. A lack of cellular energy, excessive radical production, and dysregulated apoptosis are found alone or in combination in most human diseases, including neurodegenerative diseases, stroke, cardiovascular disorders, ischemia/reperfusion, and cancer. In the context of its relevance to human disease, this article reviews current knowledge about the regulation of OxPhos with a focus on cell signaling and discusses identified phosphorylation sites with the aid of crystal structures of OxPhos complexes. Several recent studies have shown that all OxPhos components can be phosphorylated; even the small electron carrier cytochrome c is tyrosine phosphorylated in vivo. We propose that in higher organisms, in contrast to bacteria, cell signaling pathways are the main regulator of energy production, triggered for example by hormones. Pathways that have been identified to act on OxPhos include protein kinases A and C and growth factor activated receptor tyrosine kinase signaling. Present knowledge about kinases and phosphatases that execute signals at the level of the mitochondrial OxPhos system, and newly emerging concepts, such as the translocation of kinases to the mitochondria upon stimulation of a signaling pathway, are discussed.  相似文献   

15.
Wu HT  Hsu CC  Tsai CF  Lin PC  Lin CC  Chen YJ 《Proteomics》2011,11(13):2639-2653
Magnetic nanoparticles (MNP, <100 nm) have rapidly evolved as sensitive affinity probes for phosphopeptide enrichment. By taking advantage of the easy magnetic separation and flexible surface modification of the MNP, we developed a surface‐blocked, nanoprobe‐based immobilized metal ion affinity chromatography (NB‐IMAC) method for the enhanced purification of multiply phosphorylated peptides. The NB‐IMAC method allowed rapid and specific one‐step enrichment by blocking the surface of titanium (IV) ion‐charged nitrilotriacetic acid‐conjugated MNP (Ti4+‐NTA‐PEG@MNP) with low molecular weight polyethylene glycol. The MNP demonstrated highly sensitive and unbiased extraction of both mono‐ and multiply phosphorylated peptides from diluted β‐casein (2×10?10 M). Without chemical derivation or fractionation, 1283 phosphopeptides were identified from 400 μg of Raji B cells with 80% purification specificity. We also showed the first systematic comparison on the particle size effect between nano‐sclae IMAC and micro‐scale IMAC. Inductively coupled plasma‐mass spectrometry (ICP‐MS) analysis revealed that MNP had a 4.6‐fold higher capacity for metal ions per unit weight than did the magnetic micro‐sized particle (MMP, 2–10 μm), resulting in the identification of more phosphopeptides as well as a higher percentage of multiply phosphorylated peptides (31%) at the proteome scale. Furthermore, NB‐IMAC complements chromatography‐based IMAC and TiO2 methods because <13% of mono‐ and 12% of multiply phosphorylated peptide identifications overlapped among the 2700 phosphopeptides identified by the three methods. Notably, the number of multiply phosphorylated peptides was enriched twofold and threefold by NB‐IMAC relative to micro‐scale IMAC and TiO2, respectively. NB‐IMAC is an innovative material for increasing the identification coverage in phosphoproteomics.  相似文献   

16.
Many protein kinases are activated through phosphorylation of an activation loop thereby turning on downstream signaling pathways. Activation of JAK2, a nonreceptor tyrosine kinase with an important role in growth factor and cytokine signaling, requires phosphorylation of the 1007 and 1008 tyrosyl residues. Dephosphorylation of these two sites by phosphatases presumably inactivates the enzyme, but the underlying mechanism is not known. In this study, we employed MALDI‐TOF/TOF and triple quadrupole mass spectrometers to analyze qualitatively and quantitatively the dephosphorylation process by using synthetic peptides derived from the tandem autophosphorylation sites (Y1007 and Y1008) of human JAK2. We found that tyrosine phosphatases catalyzed the dephosphorylation reaction sequentially, but different enzymes exhibited different selectivity. Protein tyrosine phosphatase 1B caused rapid dephosphorylation of Y1008 followed by Y1007, while SHP1 and SHP2 selectively dephosphorylated Y1008 only, and yet HePTP randomly removed a single phosphate from either Y1007 or Y1008, leaving behind mono‐phosphorylated peptides. The specificity of dephosphorylation was further confirmed by molecular modeling. The data reveal multiple modes of JAK2 regulation by tyrosine phosphatases, reflecting a complex, and intricate interplay between protein phosphorylation and dephosphorylation.  相似文献   

17.
Protein phosphorylation plays a critical role in the regulation of cell growth and differentiation, There is considerable interest, therefore, in the facile synthesis of peptides that possess selectively phosphorylated residues for use as molecular probes in mechanistic studies of the biological consequences of phosphorylation. This work will review the various synthetic protocols used in the generation of phosphopeptides and will discuss their characterization by amino acid compositional analysis.  相似文献   

18.
Tryptic peptide fragments of tyrosine hydroxylase isolated from 32PO4-prelabeled bovine adrenal chromaffin cells are resolved into seven phosphopeptides by reverse phase-high performance liquid chromatography. All seven of the peptides are phosphorylated on serine residues. Three of these putative phosphorylation sites, peptides 3, 5, and 6, are rapidly phosphorylated (5-fold in 15 s) by both acetylcholine stimulation and potassium depolarization of the cells, and this phosphorylation is accompanied by a similarly rapid activation of the enzyme. Both phosphorylation and activation are transient and do not account for the prolonged increase in catecholamine biosynthesis produced by these stimuli. Peptides 4 and 7 show a much slower and sustained increase in phosphorylation (3-fold in 4 min) in response to acetylcholine and potassium. Phosphorylation of these peptides correlates with the sustained increase in catecholamine biosynthesis rather than enzyme activation. Peptides 1 and 2 are not stimulated by any agonist yet employed and thus show no relation to enzyme activation or catecholamine biosynthesis. Phosphorylation of all five peptides by acetylcholine or potassium is calcium-dependent. In contrast to the stimulation of phosphorylation of tyrosine hydroxylase on multiple sites, forskolin stimulates the phosphorylation of only peptide 6, and this is accompanied by a coordinated activation of tyrosine hydroxylase and increased catecholamine biosynthesis. These findings show that the phosphorylation of tyrosine hydroxylase in intact cells is more complex than predicted from in vitro results, that at least two protein kinases are involved in the secretagogue-induced phosphorylation of tyrosine hydroxylase, and that the regulation of catecholamine biosynthesis, in response to phosphorylation, appears to involve both tyrosine hydroxylase activation and other mechanisms.  相似文献   

19.
Lu W  Lee HK  Xiang C  Finniss S  Brodie C 《Cellular signalling》2007,19(10):2165-2173
Protein kinase C delta (PKCdelta plays a major role in the regulation of cell apoptosis and survival. PKCdelta is cleaved by caspase 3 to generate a constitutively active catalytic domain that mediates both its apoptotic and anti-apoptotic effects. The caspase cleavage site of PKCdelta in the hinge region is flanked by the two tyrosine residues, Y311 and Y332. Here, we examined the role of the phosphorylation of tyrosines 311 and 332 in the cleavage and apoptotic function of PKCdelta using the apoptotic stimuli, TRAIL and cisplatin. Tyrosine 332 was constitutively phosphorylated in the A172 and HeLa cells and was further phosphorylated by TRAIL and cisplatin. This phosphorylation was inhibited by the Src inhibitors, PP2 and SU6656, and by silencing of Src. Treatment of the A172 and HeLa cells with TRAIL induced cleavage of the WT PKCdelta and of the PKCdeltaY311F mutant, whereas a lower level of cleavage was observed in the PKCdeltaY332F mutant. Similarly, a smaller degree of cleavage of the PKCdeltaY332 mutant was observed in LNZ308 cells treated with cisplatin. Mutation of Y332F affected the apoptotic function of PKCdelta; overexpression of the PKCdeltaY332 mutant increased the apoptotic effect of TRAIL, whereas it decreased the apoptotic effect of cisplatin. Inhibition of Src decreased the cleavage of PKCdelta and modified the apoptotic responses of the cells to TRAIL and cisplatin, similar to effect of the PKCdeltaY332F mutant. These results demonstrate that the phosphorylation of tyrosine 332 by Src modulates the cleavage of PKCdelta and the sensitivity of glioma cells to TRAIL and cisplatin.  相似文献   

20.
Abstract: Incubation of rat pheochromocytoma PC12 cells with 4β-phorbol-12β-myristate-13α-acetate (PMA), an activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), or forskolin, an activator of adenylate cyclase, is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase. Neither the activation nor increased phosphorylation of tyrosine hydroxylase produced by PMA is dependent on extracellular Ca2+. Both activation and phosphorylation of the enzyme by PMA are inhibited by pretreatment of the cells with trifluo-perazine (TFP). Treatment of PC 12 cells with l-oleoyl-2-acetylglycerol also leads to increases in the phosphorylation and enzymatic activity of tyrosine hydroxylase; 1, 2-diolein and 1, 3-diolein are ineffective. The effects of forskolin on the activation and phosphorylation of the enzyme are independent of Ca2+ and are not inhibited by TIT5. Forskolin elicits an increase in cyclic AMP levels in PC 12 cells. The increases in both cyclic AMP content and the enzymatic activity and phosphorylation of tyrosine hydroxylase following exposure of PC 12 cells to different concentrations of forskolin are closely correlated. In contrast, cyclic AMP levels do not increase in cells treated with PMA. Tryptic digestion of the phosphorylated enzyme isolated from untreated cells yields four phosphopeptides separable by HPLC. Incubation of the cells in the presence of the Ca2+ ionophore ionomycin increases the phosphorylation of three of these tryptic peptides. However, in cells treated with either PMA or forskolin, there is an increase in the phosphorylation of only one of these peptides derived from tyrosine hydroxylase. The peptide phosphorylated in PMA-treated cells is different from that phosphorylated in forskolin-treated cells. The latter peptide is identical to the peptide phosphorylated in dibutyryl cyclic AMP-treated cells. These results indicate that tyrosine hydroxylase is activated and phosphorylated on different sites in PC 12 cells exposed to PMA and forskolin and that phosphorylation of either of these sites is associated with activation of tyrosine hydroxylase. The results further suggest that cyclic AMP-dependent and Ca2+/ phospholipid-dependent protein kinases may play a role in the regulation of tyrosine hydroxylase in PC 12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号