首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To gain a better understanding of salt stress responses in plants, we used a proteomic approach to investigate changes in rice (Oryza sativa) root plasma‐membrane‐associated proteins following treatment with 150 mmol/L NaCl. With or without a 48 h salt treatment, plasma membrane fractions from root tip cells of a salt‐sensitive rice cultivar, Wuyunjing 8, were purified by PEG aqueous two‐phase partitioning, and plasma‐membrane‐associated proteins were separated by IEF/SDS‐PAGE using an optimized rehydration buffer. Comparative analysis of three independent biological replicates revealed that the expressions of 18 proteins changed by more than 1.5‐fold in response to salt stress. Of these proteins, nine were up‐regulated and nine were down‐regulated. MS analysis indicated that most of these membrane‐associated proteins are involved in important physiological processes such as membrane stabilization, ion homeostasis, and signal transduction. In addition, a new leucine‐rich‐repeat type receptor‐like protein kinase, OsRPK1, was identified as a salt‐responding protein. Immuno‐blots indicated that OsRPK1 is also induced by cold, drought, and abscisic acid. Using immuno‐histochemical techniques, we determined that the expression of OsRPK1 was localized in the plasma membrane of cortex cells in roots. The results suggest that different rice cultivars might have different salt stress response mechanisms.  相似文献   

2.
To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel‐based and a LC MS/MS‐based proteomics method. Two‐day‐old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two‐phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel‐based proteomics, four and eight protein spots were identified as up‐ and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up‐ and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low‐abundance proteins could be identified by the LC MS/MS‐based method. Three homologues of plasma membrane H+‐ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H+‐ATPase protein.  相似文献   

3.
It is important to study the mechanism of liver fibrogenesis, and find new non‐invasive biomarkers. In this study, we used subcellular proteomic technology to study the plasma membrane (PM) proteins related to immune liver fibrosis and search for new non‐invasive biomarkers. A rat liver fibrosis model was induced by pig serum injection. The liver fibrogenesis from stage (S) S0‐1, S2, S3‐4, and S4 was detected by Masson staining and HE staining in this rat model after 2, 4, 6, and 8 weeks of treatment. The liver PM was enriched and analyzed using subcellular proteomic technology. The differentially expressed proteins were verified by Western blotting, immunohistochemistry, and ELISA. PM with 149‐fold purification was obtained and 22 differentially expressed proteins were identified. Of which, annexin A2 (ANXA2) was detected to be increased obviously in S4 compared with S0‐1, and verified by Western blotting of rat liver tissue and immunohistochemistry of rat and human liver tissue. The expression of ANXA2 in human plasma with S1‐2 was also found to be up‐regulated for 1.4‐fold than that in S0. Furthermore, ANXA2 was detected to translocate from nuclear membrane and cytosol to PM as HBV stimulation through immunocytochemical analysis in vitro. This study identified 22 differentially expressed proteins related to liver fibrosis, and verified a potential biomarker (ANXA2) for non‐invasive diagnosis of immune liver fibrosis. To our knowledge, it was the first time to dynamically study the proteins related to liver fibrosis and select biomarkers for liver fibrosis diagnosis through PM proteome research. J. Cell. Biochem. 110: 219–228, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
We report a quantitative proteomic study to investigate the changes induced in membrane rafts by the inhibition of glycogen synthase kinase‐3. Sensitive quantitation of membrane raft proteins using isobaric tagging chemistries was enabled by a novel hybrid proteomic method to isolate low‐microgram (10–30 μg) membrane raft protein preparations as unresolved bands in a low‐density acrylamide gel. Samples were in‐gel digested, differentially tagged and combined for 2‐D LC and quantitative MS. Analysis of hippocampal membrane preparations using this approach resulted in a sixfold increase in sensitivity and a threefold increase in the number of quantifiable proteins compared with parallel processing using a traditional in‐solution method. Quantitative analysis of membrane raft preparations from a human neuronal cell line treated with glycogen synthase kinase‐3 inhibitors SB415286 or lithium chloride, that have been reported to modulate processing of the Alzheimer amyloid precursor protein, identified several protein changes. These included decreases in lamin B1 and lamin B receptor, as well as increases in several endosome regulating rab proteins, rab5, rab7 and rab11 that have been implicated in processing of the amyloid precursor protein in Alzheimer's disease.  相似文献   

5.
6.
In macroautophagy, de novo formation of the double membrane‐bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8‐family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8‐mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE‐16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE‐16 retained the capacities to trigger efficient membrane tethering at the protein‐to‐lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8‐mediated membrane‐tethering reactions require trans‐assembly between the membrane‐anchored forms of LC3B and GATE‐16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B‐ and GATE‐16‐mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE‐16 for highly curved small vesicles (e.g., 50 nm in diameter), although GATE‐16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g., 200 and 400 nm in diameter). Our findings establish curvature‐sensitive trans‐assembly of human Atg8‐family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo.  相似文献   

7.
The blood–brain barrier (BBB) is composed of brain capillary endothelial cells and has an important role in maintaining homeostasis of the brain separating the blood from the parenchyma of the central nervous system (CNS). It is widely known that disruption of the BBB occurs in various neurodegenerative diseases, including Alzheimer's disease (AD). Annexin A1 (ANXA1), an anti‐inflammatory messenger, is expressed in brain endothelial cells and regulates the BBB integrity. However, its role and mechanism for protecting BBB in AD have not been identified. We found that β‐Amyloid 1‐42 (Aβ42)‐induced BBB disruption was rescued by human recombinant ANXA1 (hrANXA1) in the murine brain endothelial cell line bEnd.3. Also, ANXA1 was decreased in the bEnd.3 cells, the capillaries of 5XFAD mice, and the human serum of patients with AD. To find out the mechanism by which ANXA1 recovers the BBB integrity in AD, the RhoA‐ROCK signaling pathway was examined in both Aβ42‐treated bEnd.3 cells and the capillaries of 5XFAD mice as RhoA was activated in both cases. RhoA inhibitors alleviated Aβ42‐induced BBB disruption and constitutively overexpressed RhoA‐GTP (active form of RhoA) attenuated the protective effect of ANXA1. When pericytes were cocultured with bEnd.3 cells, Aβ42‐induced RhoA activation of bEnd.3 cells was inhibited by the secretion of ANXA1 from pericytes. Taken together, our results suggest that ANXA1 restores Aβ42‐induced BBB disruption through inhibition of RhoA‐ROCK signaling pathway and we propose ANXA1 as a therapeutic reagent, protecting against the breakdown of the BBB in AD.  相似文献   

8.
Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly‐γ‐glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self‐assembles as mono‐disperse oligomers consisted of 4–5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)‐solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins.  相似文献   

9.
The extracellular accumulation of amyloid-beta (Abeta) in neuritic plaques is one of the characteristic hallmarks of Alzheimer's disease (AD), a progressive dementing neurodegenerative disorder of the elderly. By virtue of its structure, Abeta is able to bind to a variety of biomolecules, including lipids, proteins and proteoglycans. The binding of the various forms of Abeta (soluble or fibrillar) to plasma membranes has been studied with regard to the direct toxicity of Abeta to neurons, and the activation of a local inflammation phase involving microglia. The binding of Abeta to membrane lipids facilitates Abeta fibrillation, which in turn disturbs the structure and function of the membranes, such as membrane fluidity or the formation of ion channels. A subset of membrane proteins binds Abeta. The serpin-enzyme complex receptor (SEC-R) and the insulin receptor can bind the monomeric form of Abeta. The alpha7nicotinic acetylcholine receptor (alpha7nAChR), integrins, RAGE (receptor for advanced glycosylation end-products) and FPRL1 (formyl peptide receptor-like 1) are able to bind the monomeric and fibrillar forms of Abeta. In addition, APP (amyloid precursor protein), the NMDA-R (N-methyl-D-aspartate receptor), the P75 neurotrophin receptor (P75NTR), the CLAC-P/collagen type XXV (collagen-like Alzheimer amyloid plaque component precursor/collagen XXV), the scavenger receptors A, BI (SR-A, SR-BI) and CD36, a complex involving CD36, alpha6beta1-integrin and CD47 have been reported to bind the fibrillar form of Abeta. Heparan sulfate proteoglycans have also been described as cell-surface binding sites for Abeta. The various effects of Abeta binding to these membrane molecules are discussed.  相似文献   

10.
Annexin 1 (ANXA1), galectin-1 (Gal-1) and galectin-3 (Gal-3) proteins have been identified as important mediators that promote or inhibit leukocyte migration. The expression of these proteins was studied in human neutrophils and endothelial cells (ECs) during a transmigration process induced by IL-8. Upon neutrophil adhesion to EC, a significant increase in the cleaved ANXA1 (LCS3, raised against all ANXA1 isoforms) expression was detected in the plasma membrane of adhered neutrophils and ECs compared to intact ANXA1 isoform (LCPS1, against N-terminus of protein). Adherent neutrophils had elevated Gal-3 levels in the nucleus and cytoplasm, and ECs in their plasma membranes. In contrast, a decrease in the total amounts of Gal-1 was detected in migrated compared to non-migrated neutrophils. Therefore, ANXA1 and Gal-3 changed in their content and localization when neutrophils adhere to endothelia, suggesting a process of sensitive-balance between two endogenous anti- and pro-inflammatory mediators.  相似文献   

11.
Amyloid‐β peptides (Aβs) are generated in a membrane‐embedded state by sequential processing of amyloid precursor protein (APP). Although shedding of membrane‐embedded Aβ is essential for its secretion and neurotoxicity, the mechanism behind shedding regulation is not fully elucidated. Thus, we devised a Langmuir film balance‐based assay to uncover this mechanism. We found that Aβ shedding was enhanced under acidic pH conditions and in lipid compositions resembling raft microdomains, which are directly related to the microenvironment of Aβ generation. Furthermore, Aβ shedding efficiency was determined by the length of the C‐terminal membrane‐spanning region, whereas pH responsiveness appears to depend on the N‐terminal ectodomain. These findings indicate that Aβ shedding may be directly coupled to its generation and represents an unrecognized control mechanism regulating the fate of membrane‐embedded products of APP processing.  相似文献   

12.
Nicotinic acetylcholine receptors (nAChR), the primary cell surface targets of nicotine, have implications in various neurological disorders. Here we investigate the proteome‐wide effects of nicotine on human haploid cell lines (wildtype HAP1 and α7KO‐HAP1) to address differences in nicotine‐induced protein abundance profiles between these cell lines. We performed an SPS‐MS3‐based TMT10‐plex experiment arranged in a 2‐3‐2‐3 design with two replicates of the untreated samples and three of the treated samples for each cell line. We quantified 8775 proteins across all ten samples, of which several hundred differed significantly in abundance. Comparing α7KO‐HAP1 and HAP1wt cell lines to each other revealed significant protein abundance alterations; however, we also measured differences resulting from nicotine treatment in both cell lines. Among proteins with increased abundance levels due to nicotine treatment included those previously identified: APP, APLP2, and ITM2B. The magnitude of these changes was greater in HAP1wt compared to the α7KO‐HAP1 cell line, implying a potential role for the α7 nAChR in HAP1 cells. Moreover, the data revealed that membrane proteins and proteins commonly associated with neurons were predominant among those with altered abundance. This study, which is the first TMT‐based proteome profiling of HAP1 cells, defines further the effects of nicotine on non‐neuronal cellular proteomes.  相似文献   

13.
The molecular mechanisms involved in the phytosterol-induced decrease in intestinal cholesterol absorption remain unclear. Further, other biological properties such as immunomodulatory activity and protection against cancer have also been ascribed to these plant compounds. To gain insight into the mechanisms underlying phytosterol actions, we conducted a proteomic study in the intestinal mucosa of phytosterol-fed apolipoprotein E-deficient hypercholesterolemic (apoE-/-) mice. With respect to control-fed apoE-/- mice, nine differentially expressed proteins were identified in whole-enterocyte homogenates using 2-D DIGE and MALDI-TOF MS. These proteins are involved in plasma membrane stabilization, cytoskeleton assembly network, and cholesterol metabolism. Four of these proteins were selected for further study since they showed the highest abundance change or had a potential functional relationship with known effects of phytosterols. Annexin A2 (ANXA2) and beta-actin decrease and annexin A4 (ANXA4) and annexin A5 (ANXA5) increase were confirmed by Western blot analysis. Intestinal gene expression of ANXA2 and A5 and beta-actin was reduced, whereas that of ANXA4 was unchanged. The main results were retested in normocholesterolemic C57BL/6J mice. ANXA4 and ANXA5 protein upregulation and ANXA2 and beta-actin downregulation were reproduced in these animals. However, no changes in gene expression were found in C57BL/6J mice in either of the four proteins selected. ANXA2, A4, and A5 and beta-actin are proteins of special interest given their pleiotropic functions that include cholesterol-ester transport from caveolae, apoptosis, and anti-inflammatory properties. Therefore, the protein expression changes identified in this study might be involved in the biological effects of phytosterols.  相似文献   

14.
Biological membranes define cells and cellular compartments and are essential in regulating bidirectional flow of chemicals and signals. Characterizing their protein content therefore is required to determine their function, nevertheless, the comprehensive determination of membrane‐embedded sub‐proteomes remains challenging. Here, we experimentally characterized the inner membrane proteome (IMP) of the model organism E. coli BL21(DE3). We took advantage of the recent extensive re‐annotation of the theoretical E. coli IMP regarding the sub‐cellular localization of all its proteins. Using surface proteolysis of IMVs with variable chemical treatments followed by nanoLC‐MS/MS analysis, we experimentally identified ~45% of the expressed IMP in wild type E. coli BL21(DE3) with 242 proteins reported here for the first time. Using modified label‐free approaches we quantified 220 IM proteins. Finally, we compared protein levels between wild type cells and those over‐synthesizing the membrane‐embedded translocation channel SecYEG proteins. We propose that this proteomics pipeline will be generally applicable to the determination of IMP from other bacteria.  相似文献   

15.
Human endometrial epithelium (EE) is composed of a multitude of proteins, amongst which those localized on the plasma membrane [plasma membrane proteins (PMPs)] are of critical relevance in the early stages of implantation. Evidence supports the key role of few PMPs in implantation. However, many remain unidentified, as efforts have not been made till date to generate the plasma membrane proteome of human EE cells, using a gel‐free approach. This study presents a protein catalog of the PMP enriched fraction of Ishikawa cell line; often used as an in vitro model for embryo‐adhesive EE. Liquid chromatography with tandem mass spectrometry identified 3,598 proteins. Of these, 1,963 proteins were annotated for their membrane localization. Of 1,963 proteins, 1,321 were found to have a transmembrane domain and 43 proteins had glycophosphatidylinositol (GPI) anchor. Extensive data mining revealed endometrial expression of 943 proteins reported in humans and/or rodents. Further, quantitative alterations were observed in the plasma membrane proteome on the perturbation of intracellular trafficking. Silencing of Rab11a (known for its role in plasma membrane organization) expression caused alteration in the abundance of 74 proteins. Caveolin‐1 and EpCAM levels were reduced whereas Rab4a abundance increased in the PMP extracts of Rab11a deficient cells, compared with control cells. Briefly, the study reports the identity of several novel plasma membrane‐localized proteins. A major spin‐off of the study is the identification of novel proteins trafficked by Rab11a to the plasma membrane. Targeted analysis of novel PMPs may reveal their specific roles in endometrial receptivity and implantation.  相似文献   

16.
Surveying microglia, the resident macrophage‐like cells in the central nervous system, continuously screen their surroundings to sense imbalance in tissue homeostasis. Their activity is tightly regulated in both a pro‐ and anti‐inflammatory manner. We have previously shown that the lipoglycoproteins WNT‐3A and WNT‐5A drive pro‐inflammatory transformation in primary mouse microglia cells, arguing that WNTs have a role in the modulation of the central nervous system immune response. In this study, we address the effects of recombinant WNT‐3A and WNT‐5A on lipopolysaccharide (LPS)‐activated mouse primary microglia to investigate the putative anti‐inflammatory modulation of microglia by WNTs. While both WNT‐3A and WNT‐5A alone induce an up‐regulation of cyclooxygenase 2 (COX2), a generic pro‐inflammatory microglia marker, LPS exceeds these effects dramatically. However, combination of LPS and WNTs results in a dose‐dependent decrease in LPS‐induced cyclooxygenase 2 protein and mRNA expression. In conclusion, our data suggest that WNTs have a dual and context‐dependent effect on microglia acting in a homeostatic pro‐ and anti‐inflammatory manner.  相似文献   

17.
MIP‐T3 (microtubule‐interacting protein associated with TRAF3) is a microtubule‐interacting protein that evolutionarily conserved from worms to humans, but whose cellular functions remains unknown. To get insight into the functions of MIP‐T3, we set out to identify MIP‐T3 interacting proteins by immunoprecipitation in human embryonic kidney 293 cells and MS analysis. As the results, a total of 34 proteins were identified and most of them were novel MIP‐T3 putative partners. The MIP‐T3‐associated proteins could be grouped into nine clusters based on their molecule functions, including cytoskeleton, chaperone, nucleic acid binding, kinase and so on. Three MIP‐T3‐interacted proteins – actin, HSPA8 and tubulin – were further confirmed by reciprocal coimmunoprecipitations and colocalization analysis. The interaction of MIP‐T3 with both actin filaments and microtubule suggested that MIP‐T3 may play an important role in regulation of cytoskeleton dynamics in cells. Our results therefore not only uncover a large number of MIP‐T3‐associated proteins that possess a variety of cellular functions, but also provide new research directions for the study of the functions of MIP‐T3.  相似文献   

18.
In‐depth proteomic analyses offer a systematic way to investigate protein alterations in disease and, as such, can be a powerful tool for the identification of novel biomarkers. Here, we analyzed proteomic data from a transgenic mouse model with cardiac‐specific overexpression of activated calcineurin (CnA), which results in severe cardiac hypertrophy. We applied statistically filtering and false discovery rate correction methods to identify 52 proteins that were significantly different in the CnA hearts compared to controls. Subsequent informatic analysis consisted of comparison of these 52 CnA proteins to another proteomic dataset of heart failure, three available independent microarray datasets, and correlation of their expression with the human plasma and urine proteome. Following this filtering strategy, four proteins passed these selection criteria, including myosin heavy chain 7, insulin‐like growth factor‐binding protein 7, annexin A2, and desmin. We assessed expression levels of these proteins in mouse plasma by immunoblotting, and observed significantly different levels of expression between healthy and failing mice for all four proteins. We verified antibody cross‐reactivity by examining human cardiac explant tissue by immunoblotting. Finally, we assessed protein levels in plasma samples obtained from four unaffected and four heart failure patients and demonstrated that all four proteins increased between twofold and 150‐fold in heart failure. We conclude that MYH7, IGFBP7, ANXA2, and DESM are all excellent candidate plasma biomarkers of heart failure in mouse and human.  相似文献   

19.
To obtain a comprehensive understanding of proteins involved in mitochondrion‐sarcoplasmic reticulum (SR) linking, a catalog of proteins from mitochondrion‐associated membrane (MAM) of New Zealand white rabbit skeletal muscle were analyzed by an optimized shotgun proteomic method. The membrane fractions were prepared by differential centrifugation and separated by 1D electrophoresis followed by a highly reproducible, automated LC‐MS/MS on the hybrid linear ion trap (LTQ)‐Orbitrap mass spectrometer. By integrating as low as 1% false discovery rate as one of the features for quality control method, 459 proteins were identified from both of the two independent MAM preparations. Protein pI value, molecular weight range, and transmembrane region were calculated using bioinformatics softwares. One hundred one proteins were recognized as membrane proteins. This protein database suggested that the MAM preparations composed of proteins from mitochondrion, SR, and transverse‐tubule. This result indicated mitochondria physically linked with SR in rabbit skeletal muscle, voltage‐dependent anion channel 1 (VDAC1), VDAC2, and VDAC3 might participate in formation of the tethers between SR and mitochondria.  相似文献   

20.
王宁  齐耀程  徐朗莱  张炜 《西北植物学报》2007,27(12):2371-2378
以水稻(Oryza sativa L.)苗期幼嫩根尖作为材料,利用葡聚糖-聚乙二醇两相分配法纯化得到纯度达90%的质膜组分,使用4种不同的水化液溶解质膜蛋白,进行IEF/SDS-PAGE双向电泳和MALDI-TOF/TOF质谱分析.结果显示,4种水化液中,以7 mol/L Urea2、mol/L Thiourea、4%CHAPS、20 mmol/L DTE、1%ASB14的条件对膜蛋白的溶解效果和双向电泳分离效果最好;16个被鉴定蛋白中有9个为质膜相关蛋白,5个为未知蛋白,来自其它细胞器的蛋白仅有2个.研究表明,在常用水化液中添加磺基甘氨酸三甲内盐ASB14有利于植物细胞质膜蛋白质组的分析,并且该优化条件下的双向电泳适合分离水稻质膜中亲水性相对较高的膜附着蛋白.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号